
S Y M B O L I C R E G R E S S I O N F O R I D E N T I F I C AT I O N ,
P R E D I C T I O N , A N D C O N T R O L O F D Y N A M I C A L

S Y S T E M S

Kumulative Dissertation
zur Erlangung des akademischen Grades

“doctor rerum naturalium”
(Dr. rer. nat.)

in der Wissenschaftsdisziplin “Computational Physics”

eingereicht an der
Mathematisch-Naturwissenschaftliche Fakultät

der Universität Potsdam

von
markus quade

Juni 2018



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Markus Quade: Symbolic Regression for Identification, Prediction, and Control of Dynamical 
Systems 
 
SUPERVISORS: 
PD Dr. rer. nat. Markus Abel 
apl. Prof. Dr. rer. nat. Michael Rosenblum 
 
LOCATION: 
Potsdam 
 
TIME FRAME: 
June 2018 
 
Published online at the 
Institutional Repository of the University of Potsdam: 
URN urn:nbn:de:kobv:517-opus4-419790 
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419790 



A B S T R A C T

In the present work, we use symbolic regression for automated modeling of dy-
namical systems. Symbolic regression is a powerful and general method suitable
for data-driven identification of mathematical expressions. In particular, the struc-
ture and parameters of those expressions are identified simultaneously.

We consider two main variants of symbolic regression: sparse regression-based
and genetic programming-based symbolic regression. Both are applied to identifi-
cation, prediction and control of dynamical systems.

We introduce a new methodology for the data-driven identification of nonlinear
dynamics for systems undergoing abrupt changes. Building on a sparse regression
algorithm derived earlier, the model after the change is defined as a minimum
update with respect to a reference model of the system identified prior to the
change. The technique is successfully exemplified on the chaotic Lorenz system
and the van der Pol oscillator. Issues such as computational complexity, robustness
against noise and requirements with respect to data volume are investigated.

We show how symbolic regression can be used for time series prediction. Again,
issues such as robustness against noise and convergence rate are investigated us-
ing the harmonic oscillator as a toy problem. In combination with embedding, we
demonstrate the prediction of a propagating front in coupled FitzHugh-Nagumo
oscillators. Additionally, we show how we can enhance numerical weather predic-
tions to commercially forecast power production of green energy power plants.

We employ symbolic regression for synchronization control in coupled van der
Pol oscillators. Different coupling topologies are investigated. We address issues
such as plausibility and stability of the control laws found. The toolkit has been
made open source and is used in turbulence control applications.

Genetic programming based symbolic regression is very versatile and can be
adapted to many optimization problems. The heuristic-based algorithm allows for
cost efficient optimization of complex tasks.

We emphasize the ability of symbolic regression to yield white-box models. In
contrast to black-box models, such models are accessible and interpretable which
allows the usage of established tool chains.
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Z U S A M M E N FA S S U N G

In der vorliegenden Arbeit nutzen wird symbolische Regression zur automatisier-
ten Modellierung dynamischer Systeme. Symbolische Regression ist eine mächtige
und vielseitige Methode, welche zur Daten-getriebenen Identifikation von mathe-
matischen Ausdrücken geeignet ist. Insbesondere werden dabei Struktur und Pa-
rameter des gesuchten Ausdrucks parallel ermittelt.

Zwei Varianten der symbolischen Regression werden im Rahmen dieser Arbeit
in Betracht gezogen: sparse regression und symbolischer Regression basierend auf
genetischem Programmieren. Beide Verfahren werden für die Identifikation, Vor-
hersage und Regelung dynamischer Systeme angewandt.

Wir führen eine neue Methodik zur Identifikation von dynamischen Systemen,
welche eine spontane Änderung erfahren, ein. Die Änderung eines Modells, wel-
ches mit Hilfe von sparse regression gefunden wurde, ist definiert als sparsamste
Aktualisierung im Hinblick auf das Modell vor der Änderung. Diese Technik ist
beispielhaft am chaotischem Lorenz System und dem van der Pol Oszillator de-
monstriert. Aspekte wie numerische Komplexität, Robustheit gegenüber Rauschen
sowie Anforderungen an Anzahl von Datenpunkten werden untersucht.

Wir zeigen wie symbolische Regression zur Zeitreihenvorhersage genutzt wer-
den kann. Wir nutzen dem harmonischen Oszillator als Beispielmodell, um Aspek-
te wie Robustheit gegenüber Rauschen sowie die Konvergenzrate der Optimie-
rung zu untersuchen. Mit Hilfe von Einbettungsverfahren demonstrieren wir die
Vorhersage propagierenden Fronten in gekoppelten FitzHugh-Nagumo Oszillato-
ren. Außerdem betrachten wir die kommerzielle Stromproduktionsvorhersage von
erneuerbaren Energien. Wir zeigen wie man diesbezügliche die numerische Wet-
tervorhersage mittels symbolischer Regression verfeinern und zur Stromprodukti-
onsvorhersage anwenden kann.

Wir setzen symbolische Regression zur Regelung von Synchronisation in gekop-
pelten van der Pol Oszillatoren ein. Dabei untersuchen wir verschiedene Topolo-
gien und Kopplungen. Wir betrachten Aspekte wie Plausibilität und Stabilität der
gefundenen Regelungsgesetze. Die Software wurde veröffentlicht und wird u. a.
zur Turbulenzregelung eingesetzt.

Symbolische Regression basierend auf genetischem Programmieren ist sehr viel-
seitig und kann auf viele Optimierungsprobleme übertragen werden. Der auf Heu-
ristik basierenden Algorithmus erlaubt die effiziente Optimierung von komplexen
Fragestellungen.

Wir betonen die Fähigkeit von symbolischer Regression, sogenannte white-box
Modelle zu produzieren. Diese Modelle sind – im Gegensatz zu black-box Model-
len – zugänglich und interpretierbar. Dies ermöglicht das weitere Nutzen von
etablierten Methodiken.
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1I N T R O D U C T I O N

1.1 motivation

Data is one of the pillars of the current human epoch – the information age –
with its ever increasing demand and “capacity to store, communicate, and com-
pute information” [2]. It holds the fundamental question of understanding natural
and technical processes. Usually, the language we use to formulate an answer is
mathematics. Furthermore, the question of time dependencies in data is treated by
dynamical systems theory.

Dynamical Systems are located at the core of natural sciences as the mathemati-
cal description for a huge variety of systems. This comprises physics, biology and
chemistry together with mathematics, but also any engineering field and parts of
medicine. In the last 20 years, complexity science has emerged using the language
of dynamical systems for a deeper understanding of complex systems. Such sys-
tems are typically related to huge research initiatives like climatology [3], fluid
dynamics with weather prediction [4] and large-scale transportation (airplanes [5],
cars [6]), the human brain [7], or traffic flow [8, 9, 10]. Interestingly, the occurrence
of “data” as a keyword in talks or session topics at SIAM Conference on Applica-
tions of Dynamical Systems grows exponentially [11], highlighting the importance
of data in modern research. A dynamical systems description of a real system is
always a model which highlights specific properties of the real system.

Typically, a good model arises from thorough evaluation of experimental re-
sults, theoretical considerations, and nowadays also, from additional numerical
verification. However, for complex systems, as mentioned above, such a procedure
is sometimes very hard, due to the involved scaling properties as in turbulence [12,
13], or due to complex coupling between many degrees of freedom in the system
[14]. Consequently, the idea to use a computer to assist in modeling is not too
far away. Modern search engines, like Google, accumulate the so called “big data”
into economically accessible features which eventually end up as banner ads. We
use the Machine Learning (ML) approach to reduce data to a set of scientifically ac-
cessible functions, which eventually helps the human scientist to find and evaluate
models.

In Fig. 1.1 we show a non-comprehensive overview of data-driven methods used
for identification, prediction and control of dynamical systems. A method is usu-
ally never used in isolation, but instead is paired with data preprocessing steps, i. e.
feature engineering. Additionally, the estimation method as well as potential pre-
processing steps usually have open hyper-parameters. The optimization of hyper-
parameters requires meta-learning techniques. Chained preprocessing, estimation
and meta-learning steps are called a pipeline in ML jargon. In commercial appli-
cations, if not prohibited by computational cost, the estimation method itself is a
hyper-parameter of the pipeline.

The methods used to find equations based on data are called symbolic regres-
sion, because the equations are symbolically represented in terms of a certain data

1
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Figure 1.1: Non-comprehensive overview of data-driven modeling methods for identifica-
tion, prediction and control of dynamical systems.

structure in the computer. Symbolic regression is a mathematical optimization
problem: One has to select a particular solution with respect to a cost function
that incorporates the various possibilities to fit an equation to data.

In this thesis, we picked symbolic regression as our estimation method. Most ML-
methods provide so-called black-box models, i. e. machines or functions providing
an input-output-mapping of data but not allowing model insight. In particular,
black-box models often prohibit an analysis with existing domain specific tools
and methods.

Contrarily, symbolic regression provides white-box models. Provided formulas
allow for further symbolic calculus, e. g. computation of gradients for stability
analysis or series expansion for first order models. Most importantly, domain ex-
perts can continue to rely on their intuition, e. g. when associating terms in an
expression with patterns in phase-space. This check for plausibility cannot be
provided by black-box models. Symbolic regression is also able to refine expert
models based on first principles [15], thus, symbolic regression promotes a high
interaction with domain experts.

1.2 statement of the problem

Since the focus of this thesis is on system identification, prediction and control of
dynamical systems, these concepts are explained in the following section.

A dynamical system S is described by a state vector y ∈ Rn. In real system, we
have to consider observations reflecting a partial state, i. e.

x = g(y), (1.1)

where g : Rn 7→ Rm and usually m < n.
All methods considered in this thesis are data-driven. The collected data {xi}N

i=1
allows the formulation of a regression problem with an objective function L({xi}N

i=1, f̂)
that is to be optimized. f̂ is the estimator for the function that is to be discovered.
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System Identification

In system identification, we are looking for an estimate f̂ describing the evolution
of the state vector x.

d
dt

x = f(x) (1.2)

The objective function depends on the derivatives, L(ẋ, f̂(x)), which have to be
inferred from the measurements, as well. See also Section 2.2. For spatial depen-
dencies, we may consider the more general case

∂tx = N (∇, x), (1.3)

where ∂tx is the partial derivate with respect to time, N a non-linear operator and
∇ the spatial gradient.

Prediction

In prediction, we are interested in how the state vector evolves in time based on
its current and past state and on external forcing:

x(t + τ) = f(x(t), . . . , t), (1.4)

where τ is a time increment. In contrast to system identification, we are not look-
ing for the differential equation describing the evolution of the state, but for its
solution, i. e. the propagator. To formulate this prediction as a regression prob-
lem, we record a time series {x(t)}T

t=0 and base the objective function on the
shifted version {x(t)}T+τ

t=τ as well as the estimator f̂ applied to the time series
L(x(t + τ), f̂(x(t), . . . , t)).

See also Section 3.4.

(Feedback) Control

In control, we are looking to manipulate the evolution of the system S towards a
desired state. Feedback control, cf. Equation 1.5, considers the actuation a (forcing)
based on the current measured state. We introduce a sensing function s since in
practice typically only partial measurements are feasible and full state measure-
ments are prohibitively costly.

d
dt

x = f(x) + a(s(x)), (1.5)

The objective function L usually includes the success of the control and the time
needed to converge to the desired state, but also the cost associated with the ac-
tuation and sensing, e. g. energy consumption. With symbolic regression, we are
seeking an optimal choice for either a, s, or both simultaneously. See also Sec-
tion 4.2.1.
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1.3 methods

1.3.1 Symbolic Regression

Symbolic regression can be understood as the most general type of regression
analysis. In regression analysis, we try to describe mathematical relationships be-
tween variables [16]. Symbolic regression achieves this by searching the space of
mathematical expression. This space is usually based on a set of rules or heuris-
tics. Structure and parametric dependencies of the mathematical expression are
determined simultaneously.

This understanding of symbolic regressions includes two separate families: sparse
nonlinear parametric regression, cf. Section 1.3.2, and non-parametric Genetic Pro-
gramming (GP)-based symbolic regression, cf. Section 1.3.3.

Fig. 1.2 depicts a classification chart of symbolic regression. The classification
emphasizes the trade-off between computational effort and the algorithm’s ability
to capture the underlying model complexity.

Computational
cost / effort

Model
complexity

assum
ptions

ab
out

class
/

structure
assum

ptions
ab

out
prim

itives

gradient-based optimization evolutionary optimization

Sparse
Regression

Genetic
ProgrammingHybrid

Figure 1.2: Overview of existing symbolic regression methods. The diagram shows the
model complexity versus the computational effort. The ellipses show the tra-
ditional realms of sparse regression and GP-based symbolic regression. Hybrid
methods aim to be in the upper left corner.

Sparse regression uses gradient based optimization and therefore has a lower
computational cost compared to GP-based symbolic regression. Usually, mmodel
complexity is lower as well due to the limitation of more stringent model assump-
tions.

Ideally, we want our method to be able to produce complex models with low
computational effort. This optimum is located in the upper left corner of Fig. 1.2.

Hybrid methods combine ideas from genetic programming and sparse regres-
sion, formulating a layered optimization problem. Preferably, hybrid methods are
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Pareto optimal in terms of the complexity-effort trade-off. Pareto optimality de-
scribes a state of resource allocation towards multiple objectives, such that there is
no re-allocation possible which improves an objective without impairing another
[17].

1.3.2 Sparse Regression

The basic idea of sparse regression is shared by many other machine learning tech-
niques[18]: The data is projected to a high dimensional feature space (feature en-
gineering step) with the goal of finding a low dimensional representation (feature
selection step) [19] inside this space. This idea can be realized with generalized
linear models (feature engineering) using regularization when optimizing the co-
efficients such that a few are selected (feature selection). Therefore, sparsity refers
to the coefficient vector.

With sparse regression, we use the Generalized Linear Model (GLM) ansatz [20,
21]

f̂ (x) = ∑
i

ξiφi(x), (1.6)

where φi are the set of nonlinear candidate functions, typically drawn from a func-
tion family such as polynomials or Fourier series [22], or described by a more
complex set of rules [23]. Often we refer to the set of candidate functions {φi} as
the library. The coefficients ξi are determined by minimizing the objective func-
tion L(ξi) using gradient based optimization, i. e. least squares regression [24, 20,
21]. With a poor choice of the candidate functions φi, e. g. if library functions
are non-orthogonal and/or overdetermined, the GLM ansatz is prone to overfitting.
However, overfitting can be counteracted by optimizing a regularized version of
the objective function

L′ = L+ λR(ξ) (1.7)

where R(ξ) is a penalty function prohibiting the choice of large coefficients ξi and
λ is a hyper-parameter balancing complexity and sparsity of the solution. Usu-
ally, least squares is used L = 1

2nsamples
‖x− x̂‖2

1, where nsamples is the sample size.
Normalizing the least squares error on sample size makes values for λ compa-
rable between different samples, e. g. training and testing data. Choices for the
regularization R(ξ) include (cf. [19] for a comprehensive list)

• Lasso regression ‖ξ‖1 [24]

• Ridge regression ‖ξ‖2 [25]

• Elastic Net regression ρ ‖ξ‖1 + (1− ρ) ‖ξ‖2 [26]

• Group Lasso, Sparse Group Lasso[27, 28]

Additionally, thresholding can be used. With thresholding, the regression prob-
lem is solved iteratively, disregarding certain library functions φi(x) if their corre-

1 ‖x‖j = (∑a‖xa‖)1/j
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sponding coefficient does not satisfy specific constraints. Options include sequen-
tial thresholding [29] or bootstrapped adaptive thresholding [30]. Thresholding
can be combined with regularization.

A big drawback and criticism of sparse regression concerns the effect of select-
ing the right library functions [31, 32, 33, 20]. If the target function f is embedded
in {φi} and thus an optimal solution exists, aggressive promotion of sparsity using
regularization and thresholding will lead to the desired sparse result, cf. Fig. 1.3.
However, a poor choice of library functions can lead to an under- or overfit so-
lution, which is possibly not sparse at all. A good choice for {φi} often requires
partial knowledge of the solution itself. This leads to exceptional performance of
sparse regression in textbook benchmarks while sparse results in real-world prob-
lems do not show the same degree of success. More details on sparse regression

(A) (B) (C)

{φi}
{
φ̂i

} {
φ̂i

}
{φi}

{φi}
{
φ̂i

}

{
φ̂i

}
{φi}

Figure 1.3: Common situations in library estimation in sparse regression. {φi} denotes the
function space of the ground truth, {φ̂i} the models estimate. (A) The estimate
lies within the ground truth. Even a non sparse fit will underfit. (B) The ground
truth lies within the model estimate. The optimal solution will be a sparse fit.
This is the desired case. (C) Model estimate and ground truth overlap only
partly or are completely distinct. The optimal fit in this case is either sparse
and under- or overfit.

can be found in 3.2.1 and Section 2.2.

1.3.3 Genetic Programming-Based Symbolic Regression

GP is a bio-inspired optimization heuristic [34]. In contrast to sparse regression,
cf. Section 1.3.2, it is a fitness guided or evolutionary optimization method. Evolu-
tion is the interplay of random change and natural selection in a population [35].
In evolutionary optimization, no gradients of the objective function are available.
Instead, the objective function is probed by candidate solutions and the search is
implicitly guided towards the optimum as fitter candidate solutions are preferred
over less fit ones. On small scales, i. e. considering only a few iterations of probing
with and selecting fit candidate solutions, evolutionary optimization works only
slightly better than random search [36]. The advantage will only accumulate on
larger scales which makes evolutionary optimization inherently computationally
expensive and thus slow. Also, even if a solutions exists, the stochastic nature of
evolutionary optimization does not guarantee convergence to that solution. On the
other hand GP offers great flexibility considering both the structure of the desired
solution as well as the objective function.
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This makes GP suitable for symbolic regression in system identification [37, 15,
38], prediction [39, 40, 41] and control [42, 43, 44]. A detailed description of the
algorithm and its application to symbolic regression can be found in Section 3.2.1
and Section 4.2.2. Further details on representing symbolic formulae in GP are
listed in Appendix A.

GP has applications outside the scope of this thesis too, including discovery of
conservation laws [45], NeuroEvolution of Augmenting Topologies (NEAT) [46] or
the direct optimization of machine code [47], e. g. for optimization of a controller
itself instead of providing an actuation law.

1.3.4 Hybrid methods

Hybrid methods provide a means of automating feature engineering, i. e. feature
learning [48, 49].

The sequential feature learning approach has two steps: i) find features corre-
lated to the target, e. g. optimizing Ly = corr(φ(x), y), and ii) perform the regres-
sion analysis on the enhanced input space. There are two variants; either GP or
sparse regression [50] can be used for the feature learning and sparse regression
or GP for the regression respectively. The feature learning step provides a weak
estimator. In practice, this is realized using shallow trees or low order polyno-
mials for GP or the library functions in sparse regression respectively. Under the
assumption that the desired (strongly non-linear) function can be expressed as the
concatenation of two weakly nonlinear function, feature learning will provide a
runtime speedup.

In library optimization, we try to tackle the biggest criticism of sparse regres-
sion by optimizing the library functions {φi} in addition to the coefficients ξi, cf.
Equation 1.6. The set of library functions is optimized by GP. The fitness of library
functions is usually based on their importance [51], i. e. a measure based on the cor-
responding coefficients ξi across different hyper-parameters. Noteworthy imple-
mentations include Evolutionary Feature Synthesis [51] and Feature Engineering
Wrapper [52].

Feature space transformation is conducted as a layered optimization problem.
The simplest implementation is symbolic constants [53], see also Section A.2. In
Linear Feature Space Transformations [54] a special terminal node is introduced for
GP-based symbolic regression: instead of input nodes referring to specific input
variables xi only a single node representing a linear transformation of all inputs
x′ = wTx + β is used. The weights w and offset β are optimized using sparse
regression either globally (shared across terminal nodes for each expression) or
locally.

1.3.5 Related Work

Feature Engineering

Feature engineering is a critical step in ML tasks [55]. It can be conducted sequen-
tially or be part of the optimization method itself. Feature engineering changes the
size of the input data matrix. Measurements or transformations of measurements
can be added or discarded. Principal Component Analysis (PCA) [56] is commonly
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used to create a reduced set of orthogonal features. Embedding techniques and
wavelets can be used to enrich the feature set and to cope with time dependencies.
In the context of dynamical systems, Takens’ theorem [57] gives the conditions un-
der which a dynamical system can be identified from time-delayed observations.

Heuristic-based feature engineering is sometimes part of estimators [23, 51, 52],
see also Section 1.3.4. The first layers in deep neural network architectures can
also be interpreted as feature engineering layers. With increasing computational
capabilities, automated feature engineering becomes feasible [58, 59].

The importance of feature engineering can be informally summarized by the
“garbage in, garbage out”-idiom [60, 61].

Koopman Theory

In related works, the Koopman operator perspective on dynamical systems [62,
63, 64, 65, 66] promises data-driven, linear representations of nonlinear systems to
enable optimal nonlinear estimation [67] and control [66].

The Koopman operator K is a possibly infinite dimensional linear operator
which evolves measurements g(x) of the dynamical system in time

d
dt

g = Kg. (1.8)

The Koopman operator framework provides a linear embedding of nonlinear
dynamics. Koopman models have recently been used to improve model predictive
control for strongly nonlinear systems [68], and eigenfunctions of the Koopman op-
erator provide intrinsic coordinates for optimal nonlinear control [69]. Importantly,
there are deep connections between Koopman analysis to physics first-principles,
with conserved quantities and known constraints either discovered or encoded
in the identified models. In [70], conservation laws are discovered from measure-
ments of a physical system, and these conserved quantities correspond to eigen-
functions of the Koopman operator, which may be useful for designing nonlinear
controllers that exploit the dynamics instead of fighting them [66]. The Sparse
Identification of Nonlinear Dynamics (SINDy) architecture has recently been used
to identify these Koopman coordinates purely from data [66, 69].

Deep Learning

Deep learning is a family of optimization methods based on artificial neural net-
works with many layers as underlying architectures [71]. Deep learning is very ver-
satile; applications include natural language processing, audio recognition, com-
puter vision, and robotics. Different architectures have been popularized in dif-
ferent domains, e. g. convolutional neural networks in image recognition tasks.
Recurrent neural networks are of particular interest in dynamical systems. Deep
learning has been applied to system identification [71, 72, 73, 74, 75, 76, 77, 78],
time series prediction [79, 80, 81] and control [82, 83].
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Meta-Learning

Optimization methods usually have one or more hyper-parameters tuning the
models’ ability to describe data. Hyper-parameters can either be discrete or con-
tinuous. Model performance can depend critically on specific values of hyper-
parameters.

Model selection is the task of selecting a model from a set of candidate models.
Candidate models can be of the same family based on different hyper-parameters.
Model selection is often motivated by Occam’s razor (“law of parsimony”)[84],
i. e. if two models have the same predictive capabilities, the less complex model is
preferred [36].

A weak estimator correlates only slightly with the target, whereas strong estima-
tors correlate arbitrarily well. Bagging [85] and boosting [86] are meta-estimators
aggregating several weak estimators, e. g. by a weighted average. We assume that
this leads to a more robust strong estimator. The weak estimators can be of the
same family, but trained with different hyper-parameters or different data, or of
a different family. In symbolic regression, one can create weak estimators forcing
a low complexity of the models, e. g. via high regularization or by using shallow
trees.

1.4 outline

The remainder of this thesis is organized as follows:

• In Chapter 2 we use sparse regression for identification of dynamical sys-
tems and introduce a novel paradigm of abrupt change detection based on
Lyapunov time estimation.

• In Chapter 3 we apply symbolic regression to time series prediction. The
examples range from toy problems (harmonic oscillator) to a real world sce-
nario (solar power production forecast). The latter underlines the commercial
relevance of the methods presented in this thesis.

• In Chapter 4 we use GP-based symbolic regression for synchronization con-
trol in networks of coupled oscillators.

• In Chapter 5 we describe our implementation of GP-based symbolic regres-
sion for control geared towards Machine Learning Control (MLC).

• Finally, in Chapter 6 we conclude, summarizing the relevance of the pre-
sented work and show possible directions for future research.

Additionally, technical details on GP-based symbolic regression regarding its rep-
resentation can be found in Appendix A. The software developed and used along-
side the scientific journal publications is briefly described in Appendix B. Ap-
pendix C gives a glimpse on preliminary experimental results of applying sym-
bolic regression to control a cross-flow turbine.
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This paper has been published in Chaos. Dynamical systems modeling is a cornerstone of
modern mathematical physics and engineering. The dynamics of many complex systems
(e. g. , neuroscience, climate, epidemiology, etc.) may not have first-principles derivations,
and researchers are increasingly using data-driven methods for system identification and
the discovery of dynamics. Related to discovery of dynamical systems models from data is
the recovery of these models following abrupt changes to the system dynamics. In many
domains, such as aviation, model recovery is mission critical, and must be achieved rapidly
and with limited noisy data. This paper leverages recent advances in sparse optimiza-
tion to identify the fewest terms required to recover a model, introducing the concept of
parsimony of change. In other words, many abrupt system changes, even catastrophic
bifurcations, may be characterized with relatively few changes to the terms in the under-
lying model. In this work, we show that sparse optimization enables rapid model recovery
that is faster, requires less data, is more accurate, and has higher noise robustness than the
alternative approach of re-characterizing a model from scratch.

Abstract

Big data has become a critically enabling component of emerging mathemati-
cal methods aimed at the automated discovery of dynamical systems, where
first principles modeling may be intractable. However, in many engineering
systems, abrupt changes must be rapidly characterized based on limited, in-
complete, and noisy data. Many leading automated learning techniques rely
on unrealistically large data sets and it is unclear how to leverage prior knowl-
edge effectively to re-identify a model after an abrupt change. In this work,
we propose a conceptual framework to recover parsimonious models of a
system in response to abrupt changes in the low-data limit. First, the abrupt
change is detected by comparing the estimated Lyapunov time of the data
with the model prediction. Next, we apply the Sparse Identification of Non-
linear Dynamics (SINDy) regression to update a previously identified model
with the fewest changes, either by addition, deletion, or modification of ex-
isting model terms. We demonstrate this sparse model recovery on several
examples for abrupt system change detection in periodic and chaotic dynam-
ical systems. Our examples show that sparse updates to a previously iden-
tified model perform better with less data, have lower runtime complexity,

11
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and are less sensitive to noise than identifying an entirely new model. The
proposed abrupt-SINDy architecture provides a new paradigm for the rapid
and efficient recovery of a system model after abrupt changes.

Keywords— Dynamical systems, Chaos, Data-driven models, Machine learning,
Sparse optimization

2.1 introduction

The data-driven discovery of physical laws and dynamical systems is poised to
revolutionize how we model, predict, and control physical systems. Advances are
driven by the confluence of big data, machine learning, and modern perspectives
on dynamics and control. However, many modern techniques in machine learn-
ing (e. g. , neural networks) often rely on access to massive data sets, have lim-
ited ability to generalize beyond the attractor where data is collected, and do
not readily incorporate known physical constraints. These various limitations are
framing many state-of-the-art research efforts around learning algorithms [P1], es-
pecially as it pertains to generalizability, limited data and one-shot learning [P2,
P3, P4]. Such limitations also frame the primary challenges and limitations associ-
ated with data-driven discovery for real-time control of strongly nonlinear, high-
dimensional, multi-scale systems with abrupt changes in the dynamics. Whereas
traditional methods often require unrealistic amounts of training data to produce
a viable model, this work focuses on methods that take advantage of prior expe-
rience and knowledge of the physics to dramatically reduce the data and time
required to characterize dynamics. Our methodology is similar in philosophy to
the machine learning technique of transfer learning [P5], which allows networks
trained on one task to be efficiently adapted to another task. Our architecture is
designed around the goal of rapidly extracting parsimonious, nonlinear dynami-
cal models that identify only the fewest important interaction terms so as to avoid
overfitting.

There are many important open challenges associated with data-driven discov-
ery of dynamical systems for real-time tracking and control. When abrupt changes
occur in the system dynamics, an effective controller must rapidly characterize and
compensate for the new dynamics, leaving little time for recovery based on limited
data [P6]. The primary challenge in real-time model discovery is the reliance on
large quantities of training data. A secondary challenge is the ability of models to
generalize beyond the training data, which is related to the ability to incorporate
new information and quickly modify the model. Machine learning algorithms of-
ten suffer from overfitting and a lack of interpretability, although the application
of these algorithms to physical systems offers a unique opportunity to enforce
known symmetries and physical constraints (e. g. conservation of mass). Inspired
by biological systems, which are capable of extremely fast adaptation and learn-
ing based on very few trials of new information [P7, P8, P9], we propose model
discovery techniques that leverage an experiential framework, where known physics,
symmetries, and conservation laws are used to rapidly infer model changes with
limited data.
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2.1.1 Previous work in system identification

There are a wealth of regression techniques for the characterization of system
dynamics from data, with varying degrees of generality, accuracy, data require-
ments, and computational complexity. Classical linear model identification algo-
rithms include Kalman filters [P10, P11, P12], the eigensystem realization algo-
rithm (ERA) [P13], dynamic mode decomposition (DMD) [P14, P15, P16, P17],
and autoregressive moving average (ARMA) models [P18, P19], to name only a
few. The resulting linear models are ideal for control design, but are unable to
capture the underlying nonlinear dynamics or structural changes. Increasingly,
machine learning is being used for nonlinear model discovery. Neural networks
have been used for decades to identify nonlinear systems [P20], and are expe-
riencing renewed interest because of the ability to train deeper networks with
more data [P1, P21, P22, P23, P24, P25] and the promise of transformations that
linearize dynamics via the Koopman operator [P26, P27]. Neural networks show
good capacity to recover the dynamics in a so-called “model-free” way [P28, P29].
These methods are also known as “reservoir computers”, “liquid state machines”,
or “echo state networks”, depending on the context. However, a real-time appli-
cation is unrealistic, and the output is generally not analytically interpretable. In
another significant vein of research, genetic programming [P30, P31] is a powerful
bio-inspired method that has successfully been applied to system identification
[P32, P33, P34, P35], time-series prediction [P36, P37] and control [P38, P39]. How-
ever, evolutionary methods in their pure form, including genetic programming,
are computationally complex and thus are not suitable for real-time tracking.

Recently, interpretability and parsimony have become important themes in nonlin-
ear system identification [P32, P33]. A common goal now is to identify the fewest
terms required to represent the nonlinear structure of a dynamical system model
while avoiding overfitting [P40]. Symbolic regression methods [P41, P33, P42, P40]
are generally appealing for system identification of structural changes, although
they may need to be adapted to the low-data limit and for faster processing time.
Nonparametric additive regression models [P43, P44, P45] require a backfitting
loop which allows general transformations, but may be prohibitively slow for real-
time applications. Generalized linear regression methods are slightly less general
but can be brought to a fast evaluation and sparse representation [P42, P40]. These
leading approaches to identify dynamical equations from data usually rely on
past data and aim at reliable reproduction of a stationary system, i.e. when the
underlying equations do not change in the course of time [P33, P45, P40].

2.1.2 Contributions of this work

In this work, we develop an adaptive modification of the sparse identification of
nonlinear dynamics (SINDy) algorithm [P40] for real-time recovery of a model
following abrupt changes to the system dynamics. We refer to this modeling
framework as abrupt-SINDy. Although this is not the only approach for real-time
change detection and recovery, parsimony and sparsity are natural concepts to
track abrupt changes, focusing on the fewest modifications to an existing model.
SINDy already requires relatively small amounts of data [P46], is based on fast
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regression techniques, and has been extended to identify partial differential equa-
tions (PDEs)[P47, P48], to include known constraints and symmetries [P49], to work
with limited measurements [P50] and highly corrupted and noisy data [P51, P52],
to include control inputs [P53, P46], and to incorporate information criteria to
assess the model quality [P54], which will be useful in abrupt model recovery.

Here, we demonstrate that the abrupt-SINDy architecture is capable of rapidly
identifying sparse changes to an existing model to recover the new dynamics fol-
lowing an abrupt change to the system. The first step in the adaptive identification
process is to detect a system change using divergence of the prediction from mea-
surements. Next, an existing model is updated with sparse corrections, including
parameter variations, deletions, and additions of terms. We show that identifying
sparse model changes from an existing model requires less data, less computation,
and is more robust to noise than identifying a new model from scratch. Further, we
attempt to maintain a critical attitude and caveat limitations of the proposed ap-
proach, highlighting when it can break down and suggesting further investigation.
The overarching framework is illustrated in Fig. 2.1.
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SINDy models obtained via 
sparse regression

Figure 2.1: Schematic overview of abrupt-SINDy method. (top) Illustration of single vari-
ation in a term, giving rise to an abrupt change in the dynamics, from black
to blue. (bottom) Canonical sparse changes, including parameter variation, ad-
dition, deletion, or a combination. The data and results for the top panel are
from the example in Section 2.4.1 below.

2.2 state of the art

Recently, sparse regression in a library of candidate nonlinear functions has been
used for sparse identification of nonlinear dynamics (SINDy) to efficiently identify
a sparse model structure from data [P40]. The SINDy architecture bypasses an
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intractable brute-force search through all possible models, leveraging the fact that
many dynamical systems of the form

d
dt

x = f(x) (2.1)

have dynamics f that are sparse in the state variable x ∈ Rn. Such models may be
identified using a sparsity-promoting regression [P55, P56, P57] that penalizes the
number of nonzero terms ξij in a generalized linear model:

f̂i(x) =
p

∑
j=1

ξijθj(x), (2.2)

where θj(x) form a set of nonlinear candidate functions. The candidate functions
may be chosen to be polynomials, trigonometric functions, or a more general set of
functions [P40, P42]. With poor choice of the candidate functions θj, i.e. if library
functions are non-orthogonal and/or overdetermined, the SINDy approach may
fail to identify the correct model.

Sparse models may be identified from time-series data, which are collected and
formed into the data matrix

X =
[
x1 x2 · · · xm

]T
. (2.3)

We estimate the time derivatives using a simple forward Euler finite-difference
scheme, i.e. the difference of two consecutive data, divided by the time difference:

Ẋ =
[
ẋ1 ẋ2 · · · ẋm

]T
. (2.4)

This estimation procedure is numerically ill-conditioned if data are noisy, although
there are many methods to handle noise which work very well if used correctly
[P58, P59]. Noise-robust derivatives were investigated in the original SINDy algo-
rithm [P40]. Next, we consider a library of candidate nonlinear functions Θ(X), of
the form

Θ(X) =
[
1 X X2 · · · Xd · · · sin(X) · · ·

]
. (2.5)

Here, the matrix Xd denotes a matrix with column vectors given by all possible
time-series of d-th degree polynomials in the state x. The terms in Θ can be func-
tional forms motivated by knowledge of the physics. Within the proposed work,
they may parameterize a piecewise-affine dynamical model. Following best prac-
tices of statistical learning [P56], to preprocess, we mean-subtract and normalize
each column of Θ to have unit variance. The dynamical system can now be repre-
sented in terms of the data matrices as

Ẋ ≈ Θ(X)Ξ. (2.6)

The coefficients in the column Ξk of Ξ determine the active terms in the k-th row of
Eq. (2.2). A parsimonious model has the fewest terms in Ξ required to explain the
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data. One option to obtain a sparse model is via convex `1-regularized regression:

Ξ = argmin
Ξ′

‖Ẋ−Θ(X)Ξ′‖2 + γ‖Ξ′‖1. (2.7)

The hyper parameter γ balances complexity and sparsity of the solution. Sparse
regression, such as LASSO [P55] and sequential thresholded least-squares [P40],
improves the robustness of identification for noisy overdetermined data, in con-
trast to earlier methods [P60] using compressed sensing [P61, P62]. Other regu-
larization schemes may be used to improve performance, such as the elastic net
regression [P63].

In this paper we use the sequentially thresholded ridge regression [P47], which
iteratively solves the ridge regression

Ξ = argmin
Ξ′

‖Ẋ−Θ(X)Ξ′‖2 + α‖Ξ′‖2. (2.8)

and then thresholds any coefficient that is smaller than γ. The procedure is re-
peated on the non-zero entries of Ξ until the model converges. The convergence
of the SINDy architecture has been discussed in [P64]. After a sparse model struc-
ture has been identified in normalized coordinates, it is necessary to regress onto
this sparse structure in the original unnormalized coordinates. Otherwise, non-
physical constant terms appear when transforming back from normalized coordi-
nates due to the mean-subtraction.

In La Cava et al. [P35] the authors pursue a complementary although more
computationally intensive idea of adaptive modeling in the context of generalized
linear models. Starting from an initial guess for the model, a brute force search is
conducted to scan a larger set of candidate functions θ → θθ′γ, where θ′ are multi-
plicative extensions to the initial set of candidate functions and γ are real valued
exponents. The intended use of this method is the refinement of first-principle
based models by discovery of coupling terms. It is possible to combine this re-
finement with our proposed scheme for dealing with abrupt changes. In addition,
sparse sensors [P65] and randomized algorithms [P66] may improve speed.

2.3 methods

The viewpoint of sparsity extends beyond model discovery, and we propose to
extend SINDy to identify systems undergoing abrupt changes. It may be the case
that abrupt model changes will only involve the addition, deletion, or modifica-
tion of a few terms in the model. This is a statement of the parsimony of change,
and indicates that we can use sparse regression to efficiently identify the new or
missing terms with considerably less data than required to identify a new model
from scratch. In general, each additional term that must be identified requires ad-
ditional training data to distinguish between joint effects. Thus, having only a few
changes reduces the amount of data required, making the model recovery more
rapid. This section will describe a procedure that extends SINDy to handle three
basic types of model changes:

i) Variation of a term. If the structure of the model is unchanged and only the
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parameters vary, we will perform least-squares regression on the known structure
to identify the new parameters. This is computationally fast, and it is easy to check
if the model explains the new dynamics, or if it is necessary to explore possible
additions or deletions of terms.

ii) Deletion of a term. If the model changes by the removal of a few terms, then
SINDy regression can be applied on the sparse coefficients in order to identify
which terms have dropped out.

iii) Addition of a term. If a term is added, then SINDy regression will find the
sparsest combination of inactive terms that explain the model error. Since least
squares regression scales asymptotically O(p3), with p the number of columns
in the library, this is computationally less expensive than regression in the entire
library.

Combinations of these changes, such as a simultaneous addition and deletion,
are more challenging and will also be explored. This approach is known as abrupt-
SINDy, and it is depicted schematically in Fig. 2.2.

Start

Collect Data

Find initial 
model

Collect more 
data

Model 
diverged?

Update model
Process 
finished?

Yes End

Yes

No

No

Figure 2.2: Adaptive SINDy flow chart. For an initial model and hyper parameter selec-
tion, a gridsearch is conducted. Next, we apply a predictor corrector scheme
checking every terror for model divergence using estimated Lyapunov time, and
eventually update the model in a two step fashion.

2.3.1 Baseline model

First, we must identify a baseline SINDy model, and we use a gridsearch to de-
termine the optimal hyper parameter selection. In gridsearch, all combinations of
hyper parameters are tested and the best performing set is selected. This search is
only performed once, locking in hyper parameters for future updates. The baseline
model is characterized by the sparse coefficients in Ξ0.

2.3.2 Detecting model divergence

It is essential to rapidly detect any change in the model, and we employ a classical
predictor-corrector scheme [P12]. The predictor step is performed over a time τpred
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in the interval t, t + τpred using the model valid at time t. The divergence of the
predicted and measured state is computed at t+ τ as ‖∆x‖ = ‖x̂(t+ τ)− x(t+ τ)‖,
where x̂ is the prediction and x is the measurement. The idea is to identify when
the model and the measurement diverge faster than predicted by the dynamics
of the system. For a chaotic system, the divergence of a trajectory is measured by
the largest Lyapunov exponent of the system [P67], although a wealth of similar
measures have been suggested [P68]. The Lyapunov exponent is defined as

λ = lim
τ→∞

lim
∆x(t0)→0

〈
log
(

∆x(t0+τ)
∆x(t0)

)〉

τ
, (2.9)

and its inverse sets the fastest time scale. Here, the analogy of ensemble and time
average is used, more precisely the local, finite-time equivalent [P69, P70]. An
improvement can be achieved by exploiting an ensemble, e. g. by adding noise to
the state x that corresponds to the given measurement accuracy. Since we know the
dynamical system for the prediction step, the Lyapunov exponent is determined
by evolving the tangent space with the system [P71, P72].

In our detection algorithm, we fix a fluctuation tolerance ∆x and measure if
the divergence time we find deviates from the expectation. If data are noisy, this
tolerance must be significantly larger than the the typical fluctuation scale of the
noise. Formally, the model and measurements diverge if the time-scale given by
the local Lyapunov exponent and prediction horizon disagree. The local Lyapunov
exponent is computed directly from the eigenvalues of the dynamical system [P71,
P72]. The prediction horizon T(t) is the first passage time where prediction x̂(t +
∆t) with initial condition x(t) and and measurement x(t + ∆t) differ by more than
∆x:

T(t) = argmax
∆t

‖x̂(t + ∆t)− x(t + ∆t)‖ < ‖∆x‖ . (2.10)

Analogous to the local Lyapunov exponent, we compute the ratio log ‖∆x(t0 + τ)/∆x(t0)‖
as a measure for the divergence based on the measurement. For the model, we
compute the local Lyapunov exponent as the average maximum eigenvalue λ̄(t) =
〈λ(t′)〉t′∈[t,t+T] with λ(t) = max(λi(t)) and λivi(t) = ∂ f j/∂xk

∣∣
x(t) vi(t). Thus we

compare the expected and observed trajectory divergence. Model and measure-
ment have diverged at time t if the model time scale and the measured one differ:

λ̄(t) > α
log(∆x)− log(∆̄(t))

T(t)
. (2.11)

If the model is not chaotic, but the measurement is chaotic, one must invert the
inequality, as in Fig. 2.3. The empirical factor α accounts for finite-time statistics.

This method depends heavily on the particular system under investigation, in-
cluding the dynamics, time scales, and sampling rate. In a practical implementa-
tion, these considerations must be handled carefully and automatically. It is im-
portant to note that we are able to formulate the divergence in terms of dynamical
systems theory, because our model is a dynamical system, in other cases, such
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Figure 2.3: Sketch of the prediction horizon estimation. We use the observation x(t) as
initial condition for the current model. Integration gives x̂(t). The prediction
horizon T(t) is calculated according to Eq. (2.10). The prediction horizon is a
function of time and the current model. It indicates divergence of model and
observation. For details see text.

as artificial neural networks, this is not possible due to the limited mathematical
framework.

2.3.3 Adaptive model fitting

After a change is detected, the following procedure is implemented to rapidly
recover the model:

1. First, the new data is regressed onto the existing sparse structure Ξ0 to iden-
tify varying parameters.

2. Next, we identify deletions of terms by performing the sparse regression
on the sparse columns of Θ that correspond to nonzero rows in Ξ0. This
is more efficient than identifying a new model, as we only seek to delete
existing terms from the model.

3. Finally, if there is still a residual error, then a sparse model is fit for this error
in the inactive columns of Θ that correspond to zero rows in Ξ0. In this way,
new terms may be added to the model.

If the residual is sufficiently small after any step, the procedure ends. Alterna-
tively, the procedure may be iterated until convergence. We are solving smaller
regression problems by restricting our attention to subsets of the columns of Θ.
These smaller regressions require less data and are less computationally expen-
sive [P63], compared to fitting a new model. The deletion-addition procedure is
performed after a model divergence is detected, using new transient data collected
in an interval of size tupdate.
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2.4 results

In this section, we describe the results of the abrupt-SINDy framework on dynami-
cal systems with abrupt changes, including parameter variation, deletion of terms,
and addition of terms. The proposed algorithm is compared against the original
SINDy algorithm, which is used to identify a new model from scratch, in terms of
data required, computational time, and model accuracy.

In each case, we begin by running a gridsearch algorithm[P73]1 to identify the
main parameters: α, the ridge regression regularization parameter; γ, the thresh-
olding parameter; ndegree, the maximum degree of the polynomial feature trans-
formation; and nfold, the number of cross-validation runs. For scoring we use the
explained variance score and conduct a five-fold cross validation for each point in
the (α, γ, ndegree) parameter grid. The parameters are listed in Table 2.1.

Parameter Value

α 0, 0.2, 0.4, 0.6, 0.8, 0.95
γ 0.1, 0.2, 0.4
ndegree 2, 3

nfold 5
Seed 42
CV k-fold
Score explained variance score

Table 2.1: Parameters for the grid search.

2.4.1 Lorenz system

The Lorenz system is a well-studied, and highly simplified, conceptual model for
atmospheric circulation [P74]:

ẋ = σ(y− x)

ẏ = ρx− xz− y

ż = xy− βz

(2.12)

where the parameter ρ represents the heating of the atmosphere, corresponding
to the Rayleigh number, σ corresponds to Prandtl number, and β to the aspect
ratio [P75]. The parameters are set to ρ = 28, β = 8/3, σ = 10.

In the following we integrate the system numerically to produce a reference
data set. We deliberately change the parameter ρ at t = 40 to ρ = 15 and at t = 80
back to ρ = 28, as shown in Fig. 2.4 and Fig. 2.5. These parametric changes lead
to a bifurcation in the dynamics, and they are detected quickly. The subsequent
adapted parameters are accurately detected up to two digits, as shown in Table 2.2.
Because we are identifying the sparse model structure on a normalized library Θ,
with zero mean and unit variance, we must de-bias the parameter estimates by

1 The user manual is located at http://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.GridSearchCV.html.

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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computing a least-squares regression onto the sparse model structure in the origi-
nal unnormalized variables. Otherwise, computing the least-squares regression in
the normalized library, as is typically recommended in machine learning, would
result in non-physical constant terms in the original unnormalized coordinates.
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Figure 2.4: Time-series of the y coordinate of the Lorenz system. The blue and green seg-
ments correspond to the system parameters σ = 10, ρ = 28, β = 8

3 . The orange
segment from t = 40 and t = 80 corresponds to the modified parameter ρ = 15.
The initial condition is x0 = (1, 1, 1).
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Figure 2.5: Lorenz system: Colors and parameters as in Fig. 2.4. In A, B, and C we show the
first, second, and third segments of the trajectory in color with the concatenated
trajectory in grey. The system changes from a butterfly attractor to a stable fixed
point and back to a butterfly attractor.

Abrupt changes to the system parameters are detected using the prediction
horizon from Eq. (2.10). When the system changes, the prediction horizon of the
system should decrease, with smaller horizon corresponding to a more serious
change. Conversely, the inverse time, corresponding to the Lyapunov exponent,
should diverge. Fig. 2.6 exhibits this expected behavior. After a change is detected
the model is rapidly recovered as shown in Table 2.2. It is important to confirm
that the updated model accurately represents the structure of the true dynamics.
Fig. 2.6 shows the norm of the model coefficients, ‖ξ − ξ̂‖, which is a measure
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of the distance between the estimated and true systems. Except for a short time
(tupdate = 1) after the abrupt change, the identified model closely agrees with the
true model.
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Figure 2.6: Lorenz system: A We show the model accuracy over time. For coefficients, see
Table 2.2. For t ≤ 10 no model is available and ‖ξ − ξ̂‖ = −1. At both switch
points, t = 40 and t = 80, tupdate = 1 is needed to update the model. During
this interval, a fallback solution, e. g. DMD could be implemented. Note that
the accuracy metric requires knowledge about the ground truth and thus is
only available in a hindcast scenario. B Evaluation of Eq. (2.10). At both switch
points, t = 40 and t = 80, we quickly detect the divergence of model and
measurement. The parameters are tmodel = 10, tupdate = 1, terror = 0.5, and
∆x = 1.0.

tdetected tupdate Equations

0.00 10.0
ẋ = −10.0x + 10.0y
ẏ = 27.96x− 0.99y− 1.0xz
ż = −2.67z + 1.0xy

40.01 41.0
ẋ = −10.0x + 10.0y
ẏ = 15.0x− 1.0y− 1.0xz
ż = −2.67z + 1.0xy

80.02 81.0
ẋ = −10.0x + 10.0y
ẏ = 27.98x− 1.0y− 1.0xz
ż = −2.67z + 1.0xy

Table 2.2: Lorenz system: detection and update times, along with identified equations. The
detection time coincides up to the second digit with the true switching time.
The rapidly identified model agrees well with the true model structure and
parameters. Coefficients are rounded to the second digit.
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Effects of noise and data volume

An important set of practical considerations include how noise and the amount
of data influence the speed of change detection and the accuracy of subsequent
model recovery. Both the noise robustness and the amount of data required will
change for a new problem, and here we report trends for this specific case. In
addition, the amount of data required is also related to the sampling rate, which
is the subject of ongoing investigation; in some cases, higher sampling time may
even degrade model performance due to numerical effects [P58].

Fig. 2.7 shows the model fit following the abrupt change, comparing both the
abrupt-SINDy method, which uses information about the existing model structure,
and the standard SINDy method, which re-identifies the model from scratch fol-
lowing a detected change. In this figure, the model quality is shown as a function
of the amount of data collected after the change.

The abrupt-SINDy model is able to identify more accurate models in a very
short amount of time, given by tupdate ≈ 0.1. At this point, the standard SINDy
method shows comparable error, however for even smaller times, the data are no
longer sufficient for the conventional method. Since the adaptive method starts
near the optimal solution, larger data sets do not degrade the model, which was
an unexpected additional advantage.

Fig. 2.8 explores the effect of additive noise on the derivative on the abrupt-
SINDy and standard SINDy algorithms. Note that in practice noise will typically
be added to the measurement of x, as in the original SINDy algorithm [P40],
requiring a denoising derivative [P58, P59]; however, simple additive noise on
the derivative is useful to investigate the robustness of the regression procedure.
Abrupt-SINDy has considerably higher noise tolerance than the standard algo-
rithm, as it must identify fewer unknown coefficients. In fact, it is able to handle
approximately an order of magnitude more noise before failing to identify a model.
Generally, increasing the volume of data collection improves the model. The crit-
ical point in the abrupt-SINDy curves corresponds to when small but dynami-
cally important terms are mis-identified as a result of insufficient signal-to-noise.
Although the noise and chaotic signal cannot be easily distinguished for small
signal-to-noise, it may be possible to distinguish between them using a spectral
analysis, since chaos yields red noise in contrast to the white additive noise.

2.4.2 Van der Pol

As a second example, we consider the famous nonlinear Van der Pol oscilla-
tor [P76]. We include additional quadratic nonlinearities αx2 and αy2 to study the
ability of our method to capture structural changes when these terms are added
and removed abruptly. This example focuses on the important class of periodic
phenomena, in contrast to the chaotic Lorenz dynamics. The modified Van der Pol
oscillator is described by the following equations:

ẋ = y− αy2

ẏ = µ(1− x2)y− x + αx2 ,
(2.13)
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Figure 2.7: Lorenz system: We show the model accuracy versus the amount of data used
to update (blue ×) or re-fit (orange dot) respectively. Data are collected in
the interval [40, 40 + tupdate] just after the first change of the system dynamics.
The number of data points for tupdate = 0.1 are N = 25, for tupdate = 10
we have 2500 points. At tupdate ' 1, updating and re-fitting methods become
comparable. However, for smaller update times, or less data, respectively, the
fraction of transient data becomes too small for identifying the exact model
from scratch. Updating the model needs less data for the same accuracy or
achieves higher accuracy with the same amount of data.
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Figure 2.8: Lorenz system: We show the noise robustness of model accuracy. In A) we
use the previous knowledge and update the model; in B) we make a new
fit only re-using the previously discovered hyper-parameters. The curves are
parametrized by tupdate, cf. Fig. 2.7. The accuracy measure is very noise sensi-
tive, as distinction between library functions gets lost. At a signal to noise ra-
tion of approximately 1, no accurate model can be obtained with either model.
At lower noise ratios, updating the model achieves higher accuracy (the library
is smaller). In both cases, accuracy scales approximately logarithmically with
tupdate.
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where µ > 0 is a parameter controlling the nonlinear damping, and α parame-
terizes the additional quadratic nonlinearity. The reference data set is shown in
Fig. 2.9, with µ = 7.5 and α = 0 for t ∈ [0, 100], which results in a canonical peri-
odic orbit. At t = 100 we introduce a structural change, switching on the quadratic
nonlinearity (α = −0.25), and driving the system to a stable fixed point. We also
modify the parameter µ, setting it to µ = 6.0. Finally, at t = 200, we switch off the
additional nonlinearity (α = 0) and keep µ = 6.

0 100 200 300
t

10

5

0

5

10

y

A

2 0 2
x

10

5

0

5

10

y

B

Figure 2.9: Van der Pol system with parameters µ = 5, α = 0 (blue), µ = 7.5, α = −0.25
(orange), µ = 6.0, α = 0 (green). A: time evolution of the y-coordinate. B phase-
space-trajectory x, y.

Table 2.3 shows the corresponding models recovered using the abrupt-SINDy
method. The change is detected using the Lyapunov time defined in Eq. (2.11),
as shown in Fig. 2.10. Again, the estimated Lyapunov time (Fig. 2.10 B) captures
the the changes in the model, which correspond to peaks in structural model error
(Fig. 2.10 A). While the first and third stage are indeed identified correctly, the term
−1.25x is preferred over −x− 0.25x2 in the sparse estimate for ẏ in the orange tra-
jectory. However, since both terms look similar near the fixed point at x ∼ 1, this
describes the dynamics well. This type of mis-identification often occurs in data
mining when features are highly correlated [P63] and is more related to sparse
regression in general than the proposed abrupt-SINDy. For dynamic system iden-
tification, the correct nonlinearity could be resolved by obtaining more transient
data, i.e. by perturbing the system through actuation. However, this model may be
sufficient for control while a more accurate model is identified.
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Figure 2.10: Van der Pol system: Evaluation of Eq. (2.10). Parameters: tmodel = 20, tupdate =
10, terror = 1, ∆x = 1.5.

tdetected tupdate Equations

0.00 20.01

ẋ = 1.0y

ẏ = −1.0x + 4.99y− 4.99x2y

106.39 116.00

ẋ = 0.99y + 0.25y2

ẏ = −1.26x + 7.46y− 7.46x2y

200.12 210.00

ẋ = 1.0y

ẏ = −1.0x + 5.98y− 5.98x2y

Table 2.3: Van der Pol system: Summary of the discovered equations. Coefficients are
rounded to the second digit.

2.5 conclusions

In this work, we develop an adaptive nonlinear system identification strategy de-
signed to rapidly recover nonlinear models from limited data following an abrupt
change to the system dynamics. The sparse identification of nonlinear dynamics
(SINDy) framework is ideal for change detection and model recovery, as it relies
on parsimony to select the fewest active terms required to model the dynamics. In
our adaptive abrupt-SINDy method, we rely on previously identified models to
identify the fewest changes required to recover the model. This modified algorithm
is shown to be highly effective at model recovery following an abrupt change, re-
quiring less data, less computation time, and having improved noise robustness
over identifying a new model from scratch. The abrupt-SINDy method is demon-
strated on several numerical examples exhibiting chaotic dynamics and periodic
dynamics, as well as parametric and structural changes, enabling real-time model
recovery.
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There are limitations of the method which can be addressed by several promis-
ing directions that may be pursued to improve the abrupt-SINDy method:

1. Fallback models: In the current implementation, after a change has been de-
tected, the old model will be used until enough data is collected to identify a
new model. The dynamic mode decomposition [P17] provides an alternative
fallback model, that may be identified rapidly with even less data. Addition-
ally, instead of relying on a sparse update to the current model, it is sensible
to also maintain a library of past models for rapid characterization [P77].

2. Hyperparameterization: In the initial prototype, the hyper-parameters ∆x

and tupdate are fixed. Over time, an improved algorithm may learn and adapt
optimal hyper-parameters.

3. Comprehensive Lyapunov time estimation: According to Eq. (2.10), the Lya-
punov time T(t|∆x) is estimated for a fixed ∆x. Estimating the time for a
range of values, i.e. ∆x ∈ (0, ∆xmax], will be more robust and may provide a
richer analysis without requiring additional data. Further investigation must
be made into the case of chaotic systems, where the numerical calculation of
the Lyapunov exponent may fail to reveal divergence due to the fact of sim-
ple averaging over time. Because of the importance of the detection of model
divergence, this is a particularly important area of future research.

4. Advanced optimization and objectives: Looking forward, advanced opti-
mization techniques may be used to further improve the adaptation to sys-
tem changes. Depending on the system, other objectives may be optimized,
either by including regularization or in a multi-objective optimization.

The proposed abrupt-SINDy framework is promising for the real-time recovery
of nonlinear models following abrupt changes. It will be interesting to compare
with other recent algorithms that learn local dynamics for control in response to
abrupt changes [P78]. Future work will be required to demonstrate this method on
more sophisticated engineering problems and to incorporate it in controllers. The
abrupt-SINDy modeling framework may also help inform current rapid learning
strategies in neural network architectures [P2, P3, P4], potentially allowing dynam-
ical systems methods to inform rapid training paradigms in deep learning.
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This paper has been publish in Physical Review E. We investigate the prediction of dy-
namical systems by symbolic regression applying both sparse regression and genetic pro-
gramming based symbolic regression. Three examples are used to showcase the methods:
the harmonic oscillator, coupled FitzHugh-Nagumo oscillators and solar power production
data from a local solar panel.

Abstract

We study the modeling and prediction of dynamical systems based on con-
ventional models derived from measurements. Such algorithms are highly
desirable in situations where the underlying dynamics are hard to model
from physical principles or simplified models need to be found. We focus
on symbolic regression methods as a part of machine learning. These algo-
rithms are capable of learning an analytically tractable model from data, a
highly valuable property. Symbolic regression methods can be considered
as generalized regression methods. We investigate two particular algorithms,
the so-called fast function extraction which is a generalized linear regression
algorithm, and genetic programming which is a very general method. Both
are able to combine functions in a certain way such that a good model for the
prediction of the temporal evolution of a dynamical system can be identified.
We illustrate the algorithms by finding a prediction for the evolution of a
harmonic oscillator based on measurements, by detecting an arriving front in
an excitable system, and as a real-world application, the prediction of solar
power production based on energy production observations at a given site
together with the weather forecast.

3.1 introduction

The prediction of the behavior of dynamical systems is of fundamental importance
in all scientific disciplines. Since ancient times, philosophers and scientists have
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tried to formulate observational models and infer future states of such systems.
Applications include topics as diverse as weather forecasting [Q1], the prediction
of the motion of the planets [Q2], or the estimation of quantum evolution [Q3].
The common ingredient of such systems - at least in natural sciences - is the exis-
tence of an underlying mathematical model which can be applied as the predictor.
In recent years, the use of Machine Learning (ML) methods -synonymously used
here for artificial intelligence- complemented the formulation of such mathemat-
ical models through the application of advanced data analysis algorithms that
allow accurate estimation of observed dynamics by learning automatically from
the given observations and building models in terms of their own modelling lan-
guages. Artificial Neural Networkss (ANNs) are one example of such techniques
that are popularly applied to model dynamic phenomena. ANNs are structured as
networks of soft weights organized in layers or so-called neurons or hidden units.
One problem of type approaches is the difficult-to-interpret black-box nature of
the learnt models. Symbolic regression-based approaches, such as Genetic Pro-
gramming (GP), provide alternative ML methods that are recently gaining increas-
ing popularity. These methods, similar to other ML counterparts, learn models
from observed data and act as good predictors of the future states of dynamical
systems. Their added advantages over other methods include the interpretable
nature of their learnt models and a flexible and weakly-typed [Q4] modelling lan-
guage that allows them to be applied to a variety of domains and problems. We
illustrate the hierarchy of models and their relation in Fig. 3.1.

Undoubtedly, the methods used most often in ML are neural networks. These
algorithms are inspired by the architecture of the human brain, with several layers
of neurons, as used in deep learning. In the present study, involving determinis-
tic systems, we want to use a certain branch of ML, namely symbolic regression.
This technique joins the classical, equation-oriented approach with its computer-
scientific equivalent. In this publication we do not present any major improve-
ments in the algorithms; rather we demonstrate how one can apply symbolic re-
gression to identify and predict the future state of dynamical systems.

Symbolic regression algorithms work by exploring a function space, which is
generally bounded by a preselected set of mathematical operators and operands
(variables, constants, etc.), using a population of randomly generated candidate
solutions. Each candidate solution encoded as a tree essentially works as a function
and is evaluated based on its fitness or in other words its ability to match the
observed output. These candidate solutions are evolved using a fitness-weighted
selection mechanism and different recombination and variation operators. One
common problem in symbolic regression is the bloating effect which is caused
by excessive lengthening of individual solutions or filling of the population by
large number of solutions with low fitness. In this work we use a multi-objective
function evaluation mechanism to avoid this problem by including minimizing the
solution length as an explicit objective in the fitness function.

Symbolic regression subsumes linear regression, generalized linear regression,
and generalized additive models into a larger class of methods. Such methods
have been used with success to infer equations of dynamical systems directly from
data [Q5, Q6, Q7, Q8, Q9]. One problem with deterministic chaotic systems is the
sampling of phase space using embedding [Q10, Q11]. For a high-dimensional
system, this leads to prohibitively long sampling times. Typical reconstruction
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methods use delay coordinates and the associated differences, this results in map-
ping models for the observed systems. Mathematically, differential coordinates
are better suited for modeling but they are not always accessible from data. Both
approaches, difference and differential embedding, are discussed in [Q12] with
numerical methods to obtain suitable differential variables from data. Modern
methods like diffusion maps [Q13, Q14] or local linear embedding [Q15], includ-
ing the analysis of stochastic systems, circumvent the curse of dimensionality by
working directly on the manifold of the dynamical system.

Symbolic regression has been used in previous works for the prediction and
identification of dynamical systems [Q16, Q17, Q18, Q19], more recently it has
been used for the control of turbulent flow systems [Q20, Q21]. In this work we
use a multiobjective function evaluation mechanism to avoid the above mentioned
bloating effect by including minimizing the solution length as an explicit objective
in the fitness function. Technically, we combine in our study symbolic regression
with a subsequent automatic simplification and multiobjective optimization. As a
consequence we can select a complexity and interpret the equations found. We
use open-source Python packages for the analysis. For quick tests, we conduct
symbolic regression using an elastic net method provided by the Fast Function
Extraction (FFX) package [Q22]. A more general, but usually slower method im-
plemented as a GP algorithm based on the DEAP package [Q23]. Subsequent sim-
plification is obtained using the sympy package [Q24]. All mentioned “packages”
are Python software packages, of course, any other programming framework with
similar functionality will do as well.

Machine Learning
(ML)

Symbolic
Regression

Artificial Neural
Networks (ANN)

Genetic
Programming (GP)

Fast Function
Extraction (FFX)

Figure 3.1: Illustration of the relation of the methods mentioned in the introduction. We
only sketch a part of machine learning, which is relevant for our work.

For a systematic study we examine numerically-generated data from a harmonic
oscillator as the simplest system to be predicted, and a more involved system
of coupled FitzHugh-Nagumo oscillators, which are known to produce complex
behaviour and may serve as a very simple model for neurons. We investigate
the capacity of the ML approach to detect an incoming front of activity, and give
exact equations for the regression. We compare different sampling and spatio-
temporal embedding methods, and discuss the results: it is shown that a space-
time embedding has advantages over time-only and space-only embedding.
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Our final example concerns a real-world application, the short-term and medium-
term forecasting of solar power production. In principle, this could be achieved
trivially by a high-resolution weather forecast and knowledge of the transfer of
solar energy to solar cells, a very well-understood process [Q25]. However, such
a highly resolved weather forecast does not exist, because it is prohibitively ex-
pensive: even the largest meteorological computers are still unable to compute
the weather on small spatial scales, let alone with a long time horizon at high
accuracy. As the dynamical systems community identified a long time ago, this is
mainly due to uncertainties in the initial conditions, as demonstrated by the cel-
ebrated Lorenz equations [Q26]. Consequently, we follow a data-based approach
and improve upon weather predictions using local energy production data as a
time series. We are aware that use of the full set of weather data will improve the
reported forecast, but increasing the resolution is not our interest here, rather the
proof of concept of the ML method and its applicability to real-world problems.

The rest of this paper is organized as follows. In Section 3.2 we discuss the
methods followed by details of our implementation in Section 3.3. This section
is followed by a longer Section 3.4 where results are presented for the above-
mentioned example systems. We end the paper with a summary and conclusions,
Section 3.5.

3.2 methods

In the field of dynamical systems, and in particular nonlinear dynamical systems,
reconstruction of the characteristics of an observed system from data is a funda-
mental scientific topic.

In this regard, one can distinguish parameter and structure identification. We
first discuss the existing literature on parameter identification which is easier in
that there is an established mathematical framework to fit coefficients to known
curves representing experimental data, which in turn result from known dynam-
ics. This can be conducted for linear or non-linear functions. For deterministic
systems, with the advent of modern computers, quantities like fractal dimensions,
Lyapunov exponents and entropies can also be computed to make systems compa-
rable in dynamics [Q27, Q28]. These analyses further allow the rough characteri-
zation of the type and number of orbits of a dynamical system [Q29]. On the other
hand, embedding techniques have been developed to reconstruct the dynamics of
a high-dimensional system from lower-dimensional time series [Q30, Q10, Q11].

These techniques have a number of limitations with respect to accuracy [Q31]
and the amount of data needed for making good predictive models. A chaotic sys-
tem with positive Lyapunov exponents has a prediction horizon which depends
heavily on accuracy and precision [Q31] of the data, since chaos “destroys” infor-
mation. This can be seen very clearly by the shift map example [Q28]. However a
system on a regular orbit, even marked with complicated equations, might be pre-
dicted accurately. In high-dimensional systems, one needs a large amount of data
to overcome the “curse of dimensionality” [Q27]. In fact it can be shown that for
each dimension, the number of data needed increases on a power-law basis [Q27,
Q32]. Eventually, the direct inference of the underlying equations of motion from
data can be approached using regression methods, like Kalman filtering, General-
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ized Linear Models (GLMs), Generalized Additive Modelss (GAMs), or even more
general schemes, see [Q33] and references therein. Apart from the equations them-
selves, partial derivatives often have to be estimated [Q12], which is an additional
problem for low-precision data.

For structure identification, a more complicated task, in the last 10-15 years,
powerful new methods from computer science have been applied. This includes
numerous studies on diffusion maps, local linear embedding, manifold learning,
support vector machines, artificial neural networks, and symbolic regression [Q15,
Q13, Q34, Q16]. Here, we focus on symbolic regression. It must be emphasized
that most methods are not unique and their success can only be tested based on
their predictive power.

3.2.1 Symbolic Regression

One drawback of many computational-oriented methods is the lack of equations
that can be analyzed mathematically in the neighborhood of analyzed trajectories.
Symbolic regression is a way to produce such equations. It includes methods that
identify the structure or parameters of the searched equation or both of them
simultaneously with respect to objective functions.

This means that methods like GLM, or GAM are contained in such a description.
A recent implementation of GLMs is FFX [Q22], which is explained briefly in 3.2.1.
Genetic programming, explained in Section 3.2.1, is another intuitive method and
often used for symbolic regression. Here, the algorithm searches the function space
through random combinations and mutations of functions, chosen from a basic set
of equations.

Symbolic regression is supposed to be form free and thus unbiased towards
human perception. However, human knowledge enters in the meta-rules imposed
on the model through the basic building blocks and rules on how they can be
combined. Thus, the optimal model is always conditioned on the underlying meta-
rules.

Genetic Programming

Genetic Programming (GP) is an evolutionary algorithm to find an optimal al-
gorithm or program. The term “programming” in optimization is used synony-
mously with “plan” or algorithm. It was used first by Dantzig, the inventor of
linear programming, at a time when computer programs did not exist as we
know them today [Q35]. The algorithm seeks an optimal algorithm, in our case
a function, using evolutionary, or “genetic” strategies. The pioneering work was
established by [Q36]. We can briefly describe it as follows: in GP we can represent
formulae as expression trees, such as that shown in Fig. 3.2. Non-terminal nodes
are filled with elements from a basic function set defined by the meta-rules. Ter-
minal nodes consist of variables or parameters. Given the optimization problem

f ∗ = argopt
f

Γ (3.1)
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we seek the optimal solution f ∗ through optimizing (minimizing or maximizing,
or for some cost functionals, finding the supremum or infimum) the fitness (or
cost) functional Γ. To find the optimal solution, GP uses a whole population of can-
didate solutions in parallel which are evolved iteratively through fitness propor-
tionate selection, recombination and mutation operations. The initial generation
is created randomly. Afterwards, the algorithm cycles through the following loop
until it reaches its convergence or stopping criteria:

• breed: Based on the current generation Gt, a new set of size λ of alter-
native candidate solutions, the offspring Ot, are selected. Several problem-
dependent operators are used for this tweaking step, e. g. changing parts of
a candidate solution (mutation) or combining two solutions into two new
ones (crossover). These tweaking operations may include selection pressure,
so that the “fitter” solutions are more likely to produce offspring.

• evaluate: The offspring Ot are evaluated, i.e. their fitness is calculated.

• select: Based on the fitness value, members of the next generation are se-
lected.

This scheme fits the requirements of symbolic regression. Mutation is typically
conducted by replacing a random subtree by a new tree. Crossover takes two trees
and swaps random subtrees between them. This procedure is illustrated in Fig. 3.2.
The fitness function uses a typical error metric, e. g. least squares or normalized
root mean squared error.

The random mutations sample the vicinity of their parent solution in function
space. As a random mutation could likely lead to less optimal solution, it does
not ensure a bias towards optimality. However, this is achieved by the selection,
because it ensures that favourable mutations are kept in the set while others are
not considered in further iterations.

By design and when based on similar meta-rules, GP includes other algorithms
like GLM or linear programming [Q34].

Algorithm 1 Top level description of a GP algorithm
procedure main

G0 ← random(λ)
evaluate(G0)
t← 1
repeat

Ot ← breed(Gt−1, λ)
evaluate(Ot)
Gt ← select(Ot, Gt−1, µ)
t← t + 1

until t > T or Gt = good()
end procedure
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Figure 3.2: Illustration of the genetic programming mutation and crossover. The upper left
expression tree describes the function f (x, y) =

√
0.981 + sin(x). Mutation is

conducted by picking a random subtree, here the single terminal node 0.981
and replacing it with a new random expression tree. Similarly, the crossover
operator (right) takes two expression trees and swaps two random subtrees.

FFX and the Elastic Net

Here we briefly summarize the FFX algorithm of McConaghy et al.[Q22]. This is a
symbolic regression algorithm based on a combined generalized linear model and
elastic net approach:

f (~x) = a0 +
NB

∑
i=1

aiφi(~x) (3.2)

where {ai} are a set of coefficients to be determined, and {φi} are an overdeter-
mined set of basis functions described by an heuristic, simplicity-driven set of
rules (e. g. highest allowed polynomial exponent, products, non-linear functions,
. . .).

In the elastic method, a least squares criterion is used to solve the fitting problem.
To avoid overfitting, i.e. high model sensitivity on training data, two regularizing
terms are added: The `1, and `2 norms of the coefficient vector. The `1 norm favors
a sparse model (few coefficients) and simultaneously avoids large coefficients. The
`2 norm ensures a more stable convergence as it allows for several, possibly corre-
lated variables instead of a single one. The resulting objective function written in
its explicit form reads [Q37]:

~a∗ = argmin
~a
||y− f (~x,~a)||2 + ηρ||~a||1 + (1− ρ)λ||~a||2 (3.3)
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where y are the data, η ≥ 0 the regularization weight and ρ ∈ [0, 1] is the mixing
between `1 and `2 norms. A benefit of the regularized objective function is that it
implicitly gives rise to models with different complexity, i.e. different number of
bases NB.

For large values of η, the predicted coefficients will all be zero. Reducing λ will
result in more complicated combinations of non-zero coefficients. For every point
on the (η, ρ)-grid, the “elastic net”, one can obtain a single optimal model using a
standard solver like coordinate descent to determine the optimal coefficients~a∗.

A small change in the elastic net parameters leads to a small change in ~a∗ such
that one can use the already obtained solution of a neighboring grid point to
restart coordinate descent with the new parameters.

For the obtained models we can calculate the normalized root mean-squared
error and model complexity (number of used basis functions). The FFX algorithm
is based purely on deterministic calculations. Hence its runtime compared to a
similar GP algorithm is significantly shorter. However, the meta-rules are more
stringent.

3.2.2 Multiobjective Fitness

As mentioned in Section 3.2, the solution of the regression problem is not unique in
general. A major factor which motivates symbolic regression is its comprehensible
white-box nature opposed to the black-box nature of, for example neural networks.
Invoking Ockhams razor (“law of parsimony”), a simple solution is considered
superior to a complicated one [Q38, Q39] as it is more easy to comprehend. In
addition, more complicated functions are prone to overfitting. This means that
complexity should be a criterion in the function search, such that more complex
functions are considered less optimal. We therefore seek a solution which satisfies
two objectives.

Comparing solutions by more than one metric Γi is not straightforward. One
possible approach is to weight these metrics into one objective Γ:

Γ =
N

∑
i

wiΓi (3.4)

making different candidate solutions easily comparable. In this expression, it is
implicitly assumed a priori that there is a linear trade-off between the individual
objectives. An example for such a composite metric is the elastic net, described by
Equation 3.3. This approach has three major flaws:

• One needs to determine suitable (problem dependent) wi.

• One does not account for non-linear trade-offs (e. g. all-or-nothing in one
objective).

• Instead of single optimal solution there may be a set of optimal solutions
defining the compromise between conflicting objectives (here Γ1 ' error ver-
sus Γ2 ' complexity).
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The optimal set is also called the Pareto-front, it describes the set of points (Γ1, . . . , ΓN),
where at least one of the objectives Γi is minimum. This set is called as well set
of non-dominated candidate solutions, i.e. candidate solutions that are not worse
than any other solution in the population when compared on all objectives. We
illustrate the pareto front Fig. 3.3 by filled circles. For the FFX algorithm, one can
obtain the (Pareto-) optimal set of candidate solutions by sorting the models. The
mapping from parameter space to the Pareto-optimal set is called Pareto-filtering.
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Figure 3.3: Illustration of the ranking for Pareto optimization. For a given set of points in
the “objectives plane”’ (Γ1, Γ2) one labels first all points with rank zero that
possess at least one minimum objective, the Pareto front (filled circles, solid
line). Then, these points are eliminated from the set and the remaining points
are ranked the same way: the rank 1 model emerges (filled diamonds, dashed
line). This procedure is repeated until all points are ranked

Interestingly, the concept of non-domination already partly solves the sorting
problem in higher dimensions as it maps from RN to M ordered one-dimensional
manifolds. A sorting algorithm must use a kind of ranking, which in this case is
described as follows: Candidate solutions in the Pareto-front are of rank 0. Solu-
tions of rank 1 are obtained as follows: of all models found one subtracts the rank
0 ones, and determines a new Pareto front for the remaining models. The models
on this front have rank 1. This procedure can be continued until all candidate so-
lutions are ranked. Formally, we introduce the generalized comparison operator
�, and define Model 1 f1 to be better than Model 2 f2 if its rank is lower:

f1 � f2 ⇐= rank( f1) < rank( f2)

To compare models of the same rank, one has to introduce an additional heuristic
criterion, for which there are several choices [Q40, Q41, Q42]. Usually the criterion
promotes uniqueness of a candidate solution to ensure diversity of the population
to avoid becoming trapped in a local minimum. As the uniqueness of a solution
may depend on its representation and is usually costly to compute, often its pro-
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jection to fitness space is used. This is conducted to ensure an effective spread of
candidate solutions on the Pareto-front.

For example, the Non-Dominated Sorting Algorithm II (NSGAII) [Q40] uses a
heuristic metric called crowding distance to compare two models of the same rank.
The scaled Euclidean distance in fitness space to the neighboring models is used
to describe the uniqueness of a model. For NSGAII we have:

f1 � f2 ⇐=





rank( f1) < rank( f2)

rank( f1) = rank( f2) and
distance( f1) > distance( f2)

(3.5)

Out of the current generation and their offspring Gt ∩Ot the µ best, in terms of �,
solutions are chosen for the next generation Gt+1. This selection method ensures
elitism, i.e. the best solutions found so far are carried forward in next generations.
Looking at the high-level description in 1, Gt can be seen as an archive which
keeps old members as long as they are not dominated by a new solution from the
current offspring Ot.

The different selection strategies were first studied in the context of genetic
algorithms, but more recently they have been successfully applied to symbolic
regression [Q43, Q44].

3.3 our gp setup

For all applications presented in Section 3.4, our function set is
{+, ∗,−, /, sin, cos, exp, log,√, 2}. All discontinuities are defined as zero. Our ter-
minal set consists of the input data xi as well as symbolic constants ci which are
determined during evaluation. We set up our multiple objectives as follows: the
algorithm runs until the error of the most accurate model is below 0.1%, or for
100 generations. The population size µ as well as the number of offspring per gen-
eration λ is set to 500. The depth of individuals of the initial populations varies
randomly between 1 and 4. With equal probability we generate the correspond-
ing expression trees where each leaf might have a different depth or each leaf is
forced to have the same depth. For mutation we randomly pick a subtree and re-
place it with a new tree, again using the half and half method, with minimum size
0 and maximum size 2. Crossover is conducted by randomly picking a subtree
each and exchanging them. Our breeding step is composed of randomly choosing
two individuals from the current population, performing crossover on them with
probability p = 0.5 and afterwards always mutating them. Our multiobjective cost
functional has the following components

Γ1 = NRMSE (y, ŷ) =

√
N
∑

i=1

(yi − ŷi)
2

N

ymax − ymin
(3.6)

where Normalized Root Mean Squared Error (NRMSE) is the normalized root mean-
squared error of the observed data y and its predictor ŷ = f (~x), and

Γ2 = size( f ) (3.7)
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is simply the total number of nodes in the expression tree f . Selection is conducted
according to NSGAII. In this paper, a model is called accurate if its error metric
Γ1 is small, where “small” depends on the context. For example, numerical data
might be modeled accurately if Γ1 ≤ 0.05 and measured data might be modeled
accurately if Γ1 ≤ 0.20. Similarly a model is complicated if its complexity Γ2 is
relatively large. “Good” and its comparatives are to be understood in the sense of
�.

During the generation of the initial population and selection, we force diversity
by prohibiting identical solutions. It is very unlikely to randomly create identi-
cal solutions. However, offspring may be nearly identical in structure as well as
fitness and consequently a crossover between parent and child solution may pro-
duce an identical grandchild solution. The probability of such an event grows
exponentially with the number of identical solutions in a population and there-
fore it lowers the diversity of the population in the long-term risking a pre-mature
convergence of the algorithm. Thus, by prohibiting identical solutions, the popu-
lation will have a transient period until it reaches its maximum capacity. This will
also reduce the effective number of offspring per generation. This change reduces
the probability of becoming trapped in a local minimum because of a steady state
in the evolutionary loop.

Our main emphasis is the treatment of the model parameters ci. In standard im-
plementations, e. g. the already mentioned [Q43, Q44], the parameters are mutated
randomly, like all other nodes. Here, using modern computational power we are
able to use traditional parameter optimization algorithms. Thus, the calculation of
Γ1 becomes another optimization task given the current model f j:

Γ1 = NRMSE (y, f (~x,~c∗)) (3.8)

with

~c∗ = argmin
~c

NRMSE (y, f (~x,~c)) (3.9)

The initial guess for ci is either inherited or set to one. Thus, we effectively have
two combined optimization layers. Each run is conducted using 10 restarts of the
algorithm. The Pareto front is the joined front of the individual runs. Finally, we
can use algebraic frameworks to simplify the obtained formulae. This is useful,
since a formula (phenotype, macrostate) may be represented by many different
expression trees (genotypes, microstates).

3.4 case studies

We present here results for three systems with increasing difficulty: first, we demon-
strate the principles using a very simple system, the harmonic oscillator (A); sec-
ond, we infer a predictive model for a set of coupled oscillators (B); and finally we
show how we can predict a very applied system, namely the power production
from a solar panel (C). For the first two examples we use numerically produced
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data, where we have full control over the system, while for the demonstration of
applicability we use data from a small solar power station [Q45].

3.4.1 Harmonic Oscillator

In this subsection we describe the first test of our methodology: an oscillator
should be identified correctly and a accurate prediction must be possible. Con-
sequently, we investigate the identification of a prediction model, not necessarily
using a differential formalism. This might be interpreted as finding an approxi-
mation to the solution of the underlying equation by data analysis. A deep in-
vestigation of the validity of the solution for certain classes of systems is rather
mathematical and is beyond the scope of this investigation.

Our system reads

ẋ = y (3.10)

ẏ = −ω2x (3.11)

where x and y are the state variables and ω is a constant. We use the particular
analytical solution x(t) = x0 sin(ωt), y(t) = x0ω cos(ωt). The prediction target is
x(t + τ), where τ is a time increment.

Since the analytical solution is a linear combination of the feature inputs, just
N = 2 data points are needed to train the model. This holds for infinite accuracy of
the data and serves as a trivial test for the method. In general, a learning algorithm
is “trained” on some data and the validity of the result is tested on another set, that
is as independent as possible. That way, overfitting is avoided. For the same reason
one needs to define a stop criterion for the algorithm, e. g. the data accuracy is 10−5,
it is useless and even counterproductive to run an algorithm until a root mean
square error of 10−10 (the cost function used here) is achieved. For the example
under consideration, we stop the training once the training error is smaller than 1.

Typically, a realistic scenario should include the effect of noise, e. g. in the
form of measurement uncertainties. We consequently add “measurement” Gaus-
sian noise with mean zero and variance proportional to the signal amplitude:
ξ1 ∼ N (0, (σx0)2), ξ2 ∼ N (0, (σx0ω)2), hence x̃ = x + ξ1, ỹ = y + ξ2. The train-
ing and testing data sets were created as follows: the data are generated between
[0, tmax]. Out of the first half, we chose N values at random for training. For testing
purposes we use the second half. We study the parameter space (N, τ, σ) and aver-
age the testing errors over 50 realizations for each parameter set. We only present
the results obtained with the FFX method. Of course, a similar study using GP is
possible, but practically limited by the runtime. However, the generic nature GP

allows for stochastic modeling, which is subject of ongoing research. Nevertheless,
a preview with qualitatively similar results can be found in Fig. 3.16. In Fig. 3.4
we display the normalized root mean squared error of the prediction using FFX

(measured against the noisy data) as a function of the noise amplitude. Given x(t)
and y(t) the analytical solution for the non-noisy system is just a linear combina-
tion, i.e. x(t+ τ) = cos(ωτ)x(t) + sin(ωτ)

ω y(t), and has a complexity of two. During
training we aim for a NRMSE of 1%. Thus, we find the analytical solution in the
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limit of small noise amplitude σ, see Fig. 3.4 and Fig. 3.6. Strong noise covers the
signal and thus the error saturates.
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Figure 3.4: Harmonic oscillator study, method FFX: NRMSE (3.6) versus noise level σ for
different training set lengths N and fixed τ = 10. Sufficiently small noise does
not worsen the predictability, i.e. the prediction algorithm stops at the target
training NRMSE of 1%. After 0.3 the error does not increase further, since the
noise covers the signal completely. Dashed line marks σ = 0.17.

The length of the analyzed data is another important parameter: typically one
expects convergence of the error ∼ 1√

N
for more data. A “vertical” cut through

the data in Fig. 3.4 is shown in Fig. 3.5. The training set length N has a much
lower impact than the classical scaling suggests. Crucial for this scaling is the
form free structure as well as the heuristic which is used to select the final model.
For demonstration purposes, we chose the most accurate model on the testing set,
which is of course vulnerable to overfitting. The average complexity, calculated by
Equation 3.7 of the final model as a function of the noise amplitude, is shown in
Fig. 3.6. As evident we can recover the three regimes of Fig. 3.4. For small noise,
the analytical and numerical solution agree. In the intermediate regime we find
on average more complex models (in comparison to the analytical solution). Very
strong noise hides the signal and a good prediction is impossible. The optimal
solution tends to be single constant, i.e. for high σ the complexity tends to smaller
values as seen in Fig. 3.6. The prediction error has two components: 1) given a
structure, noisy data will lead to uncertain parameters and 2) due to the form-free
nature of symbolic regression, noisy data will also lead to an uncertain structure,
increasing the uncertainty in the parameters. Thus, final model selection has to be
performed carefully, especially when dealing with noisy data. A detailed study is
presented for the example of coupled oscillators.

3.4.2 Coupled Oscillators

The harmonic oscillator is an easy case to treat with our methods. Now, we ex-
tend the analysis to add a spatial dimension. We study a model of FitzHugh-
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Figure 3.5: Harmonic oscillator study, method FFX: In solid blue: normalized root mean
squared error vs training set length N for σ = 0.17. Dashed green: e−2/
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The error decreases slightly with N, but the scaling is much less rapid than
1/
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Figure 3.6: Harmonic oscillator study, method FFX: Average complexity of the chosen
model vs. noise amplitude σ. The form-free structure allows for overfitting.
For small noise, the true solution with complexity 2 is found, for higher noise
levels, the algorithm starts to fit the noise and more terms are added, reflected
by a higher complexity.

Nagumo oscillators [Q46] on a ring. The oscillators are coupled and generate trav-
eling pulse solutions. The model was originally derived as a simplification of the
Hodgkin-Huxley model to describe spikes in axons [Q47], and serves nowadays as
a paradigm for excitable dynamics. Here, its spiky behavior is used as an abstrac-
tion of a front, observed in real world applications like the human brain, modeled
by connected neurons, or a wind power plant network where fronts of different
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pressure pass through the locations of the wind power plants. The aim is to show
that temporal and/or spatial information on the state of some network sites en-
ables an increase in predictability of a chosen site or eventually (if there are waves
in the network) to the front detection. The model for the ith oscillator is:

v̇i = vi −
v3

i
3
− wi + Ii + D ∑

i,j
Aij(vj − vi) (3.12)

ẇi = ε(vi + a− bwi) (3.13)

where vi and wi, i, j = 1, . . . , N, denote the fast and slower state variables, Ii is
an external driving force, D is the coupling strength parameter, and Aij ∈ {0, 1}
describes the coupling structure between nodes i and j. The constant parameters ε,
a and b determine the dynamics of the system as ε−1 is the time scale of the slower
“recovery variable”, and a, and b set the position of the fixed point(s). For Aij we
choose diffusive coupling on a ring, i.e. periodic boundary conditions. With the
external current Ii we can locally pump energy into the system to create two pulses
which will travel with the same speed but in opposite directions, annihilating
when they meet.

Using different spatio-temporal sampling strategies, the aim is to detect and
predict the arrival of a spike train at a location far enough away from the excitation
center (i.e. farther than the wave train diameter). We mark this special location
with the index zero.

Note that we do not aim to find a model for a spatio-temporal differential equa-
tion, since this would involve the estimation of spatial derivatives, which in turn
require a fine sampling. This is definitely not the scope here. Rather we focus on
the more application-relevant question to make a prediction based on an equation.

The construction of the data set was similar to the single oscillator case: sensors
were restricted to the vi variables. We can record the time series of v0 and use time
delayed features for the prediction. Another option is to use information from
non-local sensors.

We prepare and integrate the system as follows: we consider a ring of N = 200
oscillators. The constants are chosen as a = 0.7, b = 0.8, τ = 12.5 and D = 1.
The system is initialized with vi(0) = 0 and wi(0) = −1.5. With the characteristic
function χT(x) = 1 if x ∈ T else 0 we can write the space and time dependent
perturbation as Ii(t) = 5χt−btc≤0.4(t)χt≤40(t)χi∈{−50,−49}(i). This periodic perturba-
tion leads to a pair of traveling waves. The data were sampled at times tn = n∆t
with ∆t = 0.1. The system has multiple time scales: two are associated with the
on-site FitzHugh-Nagumo oscillator (τf ast = 1, τslow = 1

ε ), while two more are due
to diffusive coupling (τDi f f = D) and perturbation (τPert behaves as Ii(t)). The tem-
poral width of the pulse traveling through a particular site, τP = 8.4, corresponds
to the full width half maximum of the pulse. In Fig. 3.7 we show the evolution
of the oscillator network. The state of vi is color-coded. The horizontal width of
the yellow stripe corresponds to the spatial pulse width ξ ' 10.75. The speed of
the spike or front is consequently v f ront ∼ ξ/τP = 1.28. An animation of this can
be found in the supplemental material. The training data were recorded in three
different ways:



48 prediction of dynamical systems by symbolic regression

-150 -100 -50 0 49

space i

40

60

80

100

120

140

ti
m

e
 t

n

1.6

1.2

0.8

0.4

0.0

0.4

0.8

1.2

1.6

vi

Figure 3.7: Space-time plot of the pulse evolution. vi is color coded. The front velocity is
v f = 1.28. Pulse width (full width half maximum) τP = 8.4

• site-only: Only v0 is recorded, and time-delayed features v0,∆n = v0(t =

(n− ∆n)∆t) are also included with ∆n∆t = −1,−2,−3,−4.

• spatially extended: We record v0 and additionally vi with i = −2,−4, . . . ,−10,−20
(upstream direction).

• mixed: This combines the two approaches above. For each site we also in-
clude the time delayed features.

To avoid introducing additional symbols we use state variables with double sub-
scripts for discrete times, where the second index refers to time, and one subscript
for continuous time. The respective useage is evident from the context. We choose
to predict the state at time t = 2 given the data described above. In other words,
the prediction target is v0(tn + τ) with τ = 20 ' 2.5τP, corresponding to the re-
quirement to be far engouh from the excitation point. Of course, this implies a
distance of ∆x ∼ 2.5ξ. The testing and training sets were selected by using every
second point of the recorded time series.

FFX Results

We first discuss the results obtained by FFX (3.2.1). In Fig. 3.8 we display the Pareto
fronts using the three different approaches for the training set. All curves have one
point in common which represents the best fitting constant (complexity 0). As one
would expect, the site only data do not contain enough information to detect a
front. Thus, even high complexity models cannot reach an error below 4% and the
required error of 1% is never met. In the two other datasets the algorithm has the
possibility to find a combination of spatial amd temporal inputs to account for the
front velocity. Note that the shape of the front strongly depends on the internal
ρ parameter of the elastic net Equation 3.3. More information should not lead to
a decrease in predictability. Thus, the Pareto front of a data set richer in features
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dominate the corresponding Pareto front of a data set with less features. Counter-
intuitively, using ρ = 0.95 1 the front for the mixed dataset becomes non-convex
as some good fitting models are hidden by the regularizer. Thus, we can use ρ

to influence the shape of the front. Despite that, the most accurate model of the
mixed data set is still the most accurate model overall.

In the following we discuss the results for the best models for each feature set.
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Figure 3.8: Coupled spiking oscillators, method FFX: Pareto fronts for the different spatio-
temporal samplings of the network data. For this plot we use ρ = 0.95. This
leads to the non-convex shape of the front based on the most information. The
models are re-evaluated on the testing set.

If we take the perspective of an observer sitting at i = 0, we see the spike
passing: first the state is zero, then a slow increase is observed followed by a rapid
increase and decrease around the spike maximum. Eventually the state returns
slowly to zero. Statistically, the algorithm is trained by long quiet times and a short,
complicated spike form which is hard to model by a reduced set of state variables.
This is illustrated in Fig. 3.9a where for any feature set the biggest differences
occur in the spike region. Apparently, the model with site-only variables shows
worse results than the spatial one, and the spatio-temporal set models best the
passing spike. We note that in a direct confrontation, the true and modeled signal
would hard to be distinguished. In Fig. 3.9b we confront the time derivative for the
model from mixed variables. The true and modeled spike are indistinguishable by
eye.

The formulae of the most accurate models are shown in Table 3.1. For site-only
features, quadratic combinations of points at different times occur. This reflects
the approximation of the incoming front by a quadratic term. If, however only
spatial points are used, the dynamics far away are used to predict the incoming
front. If the small terms are neglected, the model consists of the signal at the
target site itself, and the previous site (-2) which carries the largest weight. Physi-
cally, it means that despite being far away the front is already felt at 2 sites away.
Since the front is stationary in a co-moving frame, spatio-temporal embedding

1 The default value of the package which works well in most scenarios.
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temporal site-only −0.0273 + 3.34v0,0 − 2.41v0,0v0,−10 − 2.09v0,−40v0,−10 +
1.64v2

0,−20 − 1.53v0,−20 − 1.16v0,−10 + 0.991v2
0,−30 +

0.684v2
0,0 + 0.463v0,−30 + 0.433v0,−20v0,0 +

0.373v0,−20v0,−10 − 0.359v2
0,−40 + 0.216v0,−40 + 0.00286v2

0,−10

spatially extended −0.00247 + 0.897v−2,0 + 0.178v0,0 − 0.0650v−4,0 +
0.00280v−10,0 − 0.00210v−8,0

temporal spatial 0.00894 + 0.442v−4,−30 + 0.346v−2,−10 + 0.175v−2,0

Table 3.1: Coupled spiking oscillators, method FFX. Formulae of the most accurate mod-
els. The spatio-temporal embedding reproduces the data very well, i.e. an early
detection is possible.

is best, namely sampling the spike train in space and moving in time with the
train velocity. Then we have a simple and compact linear dependence as seen
in the last row of Table 3.1. Let us inspect the possible physics in the model
approximating the constants a0, a1, a2, a3 roughly as 0, 0.45, 0.35, 0.175 such that
a2 = 2a3 . We first notice that τp = 8.4 ' 10. The last terms can then be re-
combined to a3v−2,−10 + a3v−2,−10 + v−2,0 as a mean value of the state with time
distance of approximately one typical time scale. The state at −30 is at the back-
side of the front and together the most important information, namely the increase
and decrease of the incoming signal is selected by the model. Alternatively, since
v(0, t) = v(−v f τP, t − τP) the best model in Table 3.1 can be interpreted as the
weighted average of the closest combination (∆i, ∆t) to represent the front velocity
( ∆i

∆t = 4
3 ≈ v f ). This demonstrates how powerful the algorithm works in selecting

important features.

GP Results

We again examine the Pareto-optimal models illustrated in Fig. 3.10. For each fea-
ture set we obtain a non-convex Pareto front. The shape and the values of the
fronts are broadly similar to the results obtained by FFX. Because GP is an evolu-
tionary method and relies on random breeding rules, we display averaged results:
we initialize the algorithm with different seeds of the random number generator,
calculate the Pareto fronts and average the errors for the non dominated models of
the same complexity. Note that not all complexities occur on each particular front.
This way, we obtain a generic Pareto front and avoid atypical models which may
occur by chance. The results of Table 3.2 is not averaged, but the best result for
one specific seed (42). The errors of the models reachable by the different sets are
again decreasing from site only over spatially extended to mixed. However, the
mixed model reaches almost zero error which is quite remarkable!

The difference plots for the method are given in Fig. 3.11. While the site only
set is not able to give a convincing model for an incoming front, the spatially
extended set gives a reasonable model with little error. The mixed model is very
good with perfect coincidence of model and true dynamics. This model cannot be
distinguished by eye from the observed signal.

The models provided by the GP algorithm with seed 42 are given in Table 3.2.
Due to the very general character of GP these can be overwhelming at first glance.
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Figure 3.9: Coupled spiking oscillators, method FFX. For each feature set, the most accurate
model is used as the predictor v̂0. In (a) we show the difference δv0 = v0 − v̂0.
The upper two curves are shifted by 0.25 and 0.5 respectively. In (b) we compare
the time derivative (approximated by the finite difference quotient) of the most
accurate model overall (mixed) and the real data. For details see text.

However, we can simplify them down by using computer algebra systems like
sympy [Q24] or Mathematica (here we use sympy).

The interpretation of the GP results requires a bit more thinking. In essence,
they follow a logic similar to the FFX results. The site-only model is complicated,
and instead of a square operator a trigonometric function is used to mimic the
incoming pulse. Since the data do not include directly all information needed, the
algorithm tries to fit unphysical functions. This is clearly a non-deterministic and
overfitting result, mirrored by the high complexity of the functions involved. For
spatially extended models, we obtain linear and sinusoidal components, and the
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Figure 3.10: Coupled spiking oscillators, method GP. Averaged Pareto fronts, for each
spatio-temporal sampling option, 10 runs are conducted and the resulting
complexities and errors are averaged. Errorbars represent the standard devi-
ation. For the spatially extended and mixed data sets the errors are smaller
than the circle size. The models are re-evaluated on the testing set.

temporal site-only v2
0,0/(v0,−10 +

√
(− v0,−10(v0,0− v0,−30)(v0,−30/ sin(v0,−10 +

v0,−20) + exp(v0,−30) −
√
( sin(v0,−30)) +

cos(
√
(v0,−30)v0,−40))))

spatially extended 0.208v0,0 + 0.792v−2,0 + 0.0274 exp(−v−4,0) sin(v−2,0)

temporal spatial 0.878v−4,−30 + 0.124496v−4,−40

Table 3.2: Coupled spiking oscillators, method GP. Formulas of the most accurate models
for seed 42.

model uses only three features, namely the on-site values and the ones at two and
four units left on our site under consideration. Remarkably, a sinusoidal behavior
is observed with an exponential decrease, which is our intuition. Eventually, the
spatio-temporal embedding yields a very simple model which approximates the
front velocity v f to be between 1 and 4

3 . The accuracy of this model is very high.
Summarizing, when given enough input information, both methods find a linear

model for the predictor v̂0(t + τ) by finding the most suitable combination of
temporal and spatial shift to mimic the constant front velocity. If this information
is not available in the input data, nonlinear functions are used.

3.4.3 Solar Power Data

In this section, we describe the results obtained for one-day-ahead forecasting
of solar power production. The input data used for training are taken from the
unisolar solar panel installation at Potsdam University with about 30 kW installed.
Details are found at [Q45]. We join the solar power data with meteorological fore-
cast data from the freely available European Centre for Medium-Range Weather
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Figure 3.11: Coupled spiking oscillators, method GP. For each feature set, the most ac-
curate model is used as the predictor v̂0. In (a) we show the difference
δv0 = v0 − v̂0. The upper two curves are shifted by 0.25 and 0.5 respectively.
In (b) we compare the time derivative (approximated by the finite difference
quotient) of the most accurate model overall (mixed) and the real data. Pre-
diction and true data cannot be distinguished by eye.

Forecasts (ECMWF) portal [Q48] as well as the actual observed weather data. These
public data are of limited quality and serve for our proof of concept with real data
and all their deficiencies.

The solar panel data P(t) were recorded every five minutes, at geoposition 52.41

latitude, 12.98 longitude. The information about the weather can be split into two
categories: weather observations of a station near the power source W(t) and the
weather forecast Ŵ(t + τ), where τ is the time difference to the prediction target.
We do not have weather data from the station directly, but can use data from a
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weather station nearby (ID: 10379). The weather forecast data are obtained every
six hours at the closest location publicly accessible, 52.5 latitude and 13 longitude.
Typical meteorological data contain, but are not limited to, the wind speed and
direction, pressure at different levels, the irradiation, cloud coverage, temperature
and humidity. However, in this example, we only use temperature and cloudiness
as well as their forecasts as features for our model. The latter is obtained by mini-
mizing

Γ1 = NRMSE
(

P(t + τ), P̂
(

P(t), W(t), Ŵ(t + τ)
))

Γ2 = size( f )
(3.14)

with f the model under consideration. Our prediction target is P̂(t + τ) with
τ = 24, the one-day-ahead power production. We create our datasets with a sam-
pling of 1h. While additional information from the solar power data remains un-
used, the prediction variables have to be interpolated. The quality of the forecast
depends on quality of the weather measurement and weather forecast. As we use
publicly available data, we can only demonstrate the procedure and cannot attain
errors as low as those used in commercial products, which will be discussed else-
where. The features of the the data set are listed in Table 3.3. Furthermore, we

Name Symbol Source Sampling Variable

Solar power P(t) direct access 10 min x1

Total cloud coverage tcc(t) Synop 1h x4

2 meter temperature T(t) Synop 1h x3

Total cloud coverage prediction tccpred(t, τ) ECMWF-TIGGE 6h x2

2 meter temperature prediction Tpred(t, τ) ECMWF-TIGGE 6h x0

Table 3.3: Solar power study: description of the data set. We use a set of 5 features drawn
from different sources with different sampling.

scale each feature to have its minimum equal zero and maximum equal to one.
The models are trained with data from June and July of 2014. Testing is conducted
for August 2014. To obtain a first impression (assuming no prior knowledge), we
calculate the mutual correlation of the data. The power produced the next day is
heavily correlated with the predicted solar irradiation. This is a confirmation that
the physics involved is mirrored in the model and that weather prediction is good
on average. Quantitative statements on the quality of weather prediction is not
easy and can be found in the literature [Q48].

GP Results

Let us consider the results of our forecasting with GP shown in Fig. 3.12. The
Pareto fronts are shown for both the training and testing set. As presented for the
coupled oscillators in Fig. 3.4.2, we have conducted 10 runs with different seeds
and display the averaged result. Of course, for the training set (filled diamonds),
increasing complexity means decreasing error. We see a strong deviation for very
complicated models of the testing data (filled circles). This may be an indication
of a small testing sample, or indicate overfitting. The outlier at Γ = 18 is a re-
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sult of the particular realization of the evolutionary optimization. With a different
setting, e. g. more iterations, or multiple runs such outliers are eliminated. To clar-
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Figure 3.12: Solar power study, Average Pareto front obtained using GP: with increasing
complexity, training and testing data first behave similarly, then testing devi-
ates strongly indicating overfitting or too small testing data set, respectively.
The peaks around complexity 20 are due to two reasons: there are only few
models on the fronts (1-3), and one of them is an extreme outlier.

ify this question, we show the functions found as solution of our procedure with
increasing complexity and one specific seed (42) in Table 3.4.

Complexity Γ2 Error Γ1 Formula

1.0 0.2117 x1

2.0 0.1997 sin(x1)

3.0 0.1938 sin(sin(x1))

4.0 0.1827 0.662
√
(x1)

5.0 0.1993

√
(x0 sin(x1))

6.0 0.1931

√
( sin(x0) sin(x1))

7.0 0.189

√
(x0x1 cos(x3))

8.0 0.1943

√
(x1)(x0 − x3 + 0.649)

9.0 0.2348

√
(x1) cos(x2x3/x0)

10.0 0.192

√
(x1)(x0 − x4(x3 − 0.699))

12.0 0.2057

√
(x1)(x0 − x2(x2x3 − 0.592))

16.0 0.2684

√
(x1)(x0 + (−x2x3 + 0.597) sin(x4 + sin(x1)))

18.0 0.1995 −x0
√
(x1)((sin(x3)− 0.641) exp(x4) cos(x3)− 1)

25.0 0.1904 x0(
√
(x1) + (−x3 + 0.715)(sin(x1) +

sin(x2x4)) cos(x1))

Table 3.4: Solar power study, method GP: formulae of the Pareto front models for seed 42.
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From Table 3.4 we see that GP follows a very reasonable strategy: First, it recog-
nizes that the persistence method is a legitimate thing, with production tomorrow
being the same as today (x1 = P(t)). Up to a complexity of 5, the identified mod-
els only depend on the solar power x1 and describe with increasing accuracy the
conditioned average daily profile. The more complex models include the weather
data and forecast. The geometric mean of current power and predicted tempera-
ture is present. However, due to the low quality weather forecast as well as the
seasonal weather difference between training and testing data, there is no net gain
in prediction quality.

Without any further analysis, the model with the lowest testing error is cho-
sen. In Fig. 3.13 (a) we confront the real time series with the prediction from GP

for the model of complexity 4. One clearly finds the conditioned average profile.
This predicts the production onset a bit too early. The error distribution is shown
in Fig. 3.13 (b), where we recognize an asymmetric error distribution with more
probable under- than overprediction.

FFX Results

The results of the FFX method are shown in Fig. 3.14-Fig. 3.15 and the models in
Table 3.5. As shown, the FFX method is less capable of predicting longer inactive
periods, such as at night, where no solar power is produced. This is clearly visible
in Fig. 3.15. One may wonder why a constant (complexity zero) explains about 30%
of the data (Fig. 3.14). To understand this, let us consider the example of a uniform
distribution: the standard deviation is 0.366 ( 1√

12
), for a Gaussian distribution the

standard deviation from the mean is 0.34 (one-sided). This coincides with our
numbers, where we note that a Gaussian is only illustrative, since the power is
strictly nonnegative.

Analyzing the equations of Table 3.5, we notice that the best FFX function is
a quadratic form with maxima to limit the signal above zero. This amounts to
recover the mean shape of the signal as a quadratic function. Unfortunately this
seems almost trivial since one could obtain this mean shape by purely geometrical
considerations with a factor for the cloud coverage.

Complexity Γ2 Error Γ1 Formula

0 0.2694 0.221

1 0.1996 0.108 + 0.511x1

2 0.1941 0.0223 + 0.606x1 + 0.139x0

3 0.1934 0.0470 + 0.436x1 + 0.328x0x1 + 0.138x4x0

4 0.1899 0.459 − 0.458 max(0, 0.200 − x1) −
0.339 max(0, 0.333 − x1) − 0.134 max(0, 0.733 −
x1)− 0.0828 max(0, 0.867− x1)

5 0.1814 0.301 − 1.25 max(0, 0.333 − x1)max(0, 0.200 −
x1) − 0.810 max(0, 0.467 − x1)max(0, 0.200 −
x1) + 0.457x0x1 − 0.252 max(0, 0.333 − x1) −
0.0794 max(0, 0.200− x1)

Table 3.5: Solar power study, method FFX: formulae of the Pareto front models.
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Figure 3.13: Solar power study, method GP: a) Real and predicted time series. We display
the results of the first week of August 2015. Prediction used model of com-
plexity 4 which had lowest error on the test set. b) Histogram of the residuals
ε = P− P̂. The distribution is asymmetric around zero. The model tends to
underpredict.

Summarizing the results for the solar power curves, both methods are able to
reproduce the true curve to approximately 20% which is legitimate for a nonopti-
mized method. The detection of changes when clear sky switches to partially or
fully clouded one is not entirely satisfactory and one needs to investigate the im-
provement of weather predictions for a single location. As said in the introduction,
a perfect weather prediction with high resolution would render this work useless
for power production forecast (although not for other questions).

Nevertheless, we note that the results in the form of analytic models are highly
valuable, because interpretations and further mathematical analysis are possible.
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Figure 3.14: Solar power study, Pareto front obtained using FFX. The results for FFX are
as accurate as the ones obtained with GP. Test and training set are, however,
nicely aligned. This demonstrates not only consistency of the models, but less
variability of the models found.
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Figure 3.15: Solar power study, method FFX: a) Timeseries of the predicted (P̂), and ob-
served (P) data. We display the results of the first week of August 2015. Sim-
ilar to the GP prediction extrema are not particularly well predicted. For the
linear model, even the zero values are not well hit. The reason for this is the
regression to mean values and the inability of powers to stay at zero for a
sufficient time. b) Histogram of the residuals ε = P− P̂. Despite different for-
mulas, the histogram of the residuals is asymmetric around zero with a trend
to underpredict as well.
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3.5 conclusion

We have demonstrated the use of symbolic regression combined with complexity
analysis of the resulting models for the prediction of dynamical systems. More
precisely, we identify a system of equations yielding optimal forecasts in terms
of a minimized normalized root mean squared error of the difference between
model forecast and observation of the system state. We did not investigate theo-
retical aspects such as the underlying state space. These will be subject of future
investigations. Such work is to be carried out carefully to find the limitations of
the approach, in particular of genetic programming, which is rather uncontrolled
in the way the search space is explored. On the other hand, the methods stand in
line with a large collection of methods from regression and classification and one
can use much of this previous knowledge. In our opinion, the multiobjective anal-
ysis is crucial to identify models to a degree such that they can be used in practice.
Probably, this approach will prove very helpful if used in combination with scale
analysis, e. g. by prefiltering the data on a selected spatio-temporal scale and then
identify equations for this level.

We have tried to show the capabilities of symbolic regression by three examples
of increasing complexity: a trivial one - the harmonic oscillator with an almost per-
fect predictive power, a collection of excitable oscillators where we demonstrated
that the methods can perform a kind of multi-scale analysis based on the data.
Thirdly, examining the one-day-ahead forecasting of solar power production we
have shown that even for messy data we can successfully apply symbolic regres-
sion. We expect symbolic regression to outperform classical methods by a few
percent in NRMSE. For theoretical considerations, this might be negligible, for real
world applications, a few percent might translate into a considerable advantage,
since the usage of rare resources can be optimized.

A question for further research is how we can use simplification during the
GP iteration to alter the complexity. It may be even a viable choice to control the
complexity growth over time, the so-called bloat, in single objective genetic pro-
gramming - a topic of ongoing interest [Q49]. Additionally, we introduced an
intermediate step to only allow for one of many identical solutions for further
evolution. One could consider to expand the idea of identical expression trees to
include symmetries.

We conclude that symbolic regression is very useful for the prediction of dy-
namical systems, based on observations only. Our future research will focus on
the use of equations to couple the systems to other macroscopic ones (e. g. finance,
in the case of wind power), and on the analysis of system stability and other funda-
mental properties using the found equations, which is scientifically a very crucial
point.
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appendix : harmonic oscillator noise study with gp

An analogous case study as presented in Section 3.4.1 using GP requires substantial
code development and computational time, and is subject of ongoing research. For
completeness, we depict a small case study in Fig. 3.16.
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Figure 3.16: Harmonic oscillator study, method GP: NRMSE Equation 3.6 versus noise level
σ. We fixed N = 50 and τ = 10. The results are averaged 30 times. The
absolute values for the NRMSE are higher compared to the results obtained
with FFX (Fig. 3.16).
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Abstract

Networks of coupled dynamical systems provide a powerful way to model
systems with enormously complex dynamics, such as the human brain. Con-
trol of synchronization in such networked systems has far-reaching applica-
tions in many domains, including engineering and medicine. In this paper,
we formulate the synchronization control in dynamical systems as an opti-
mization problem and present a multi-objective genetic programming-based
approach to infer optimal control functions that drive the system from a syn-
chronized to a non-synchronized state and vice versa. The genetic programming-
based controller allows learning optimal control functions in an interpretable
symbolic form. The effectiveness of the proposed approach is demonstrated
in controlling synchronization in coupled oscillator systems linked in net-
works of increasing order complexity, ranging from a simple coupled oscilla-
tor system to a hierarchical network of coupled oscillators. The results show
that the proposed method can learn highly effective and interpretable control
functions for such systems.

Keywords— Dynamical Systems, Synchronization Control, Genetic programming

4.1 introduction

The control of dynamical systems lies at the heart of modern engineering [R1], and
in many other disciplines, including physics [R2, R3] and medicine [R4, R5]. This
paper specifically focuses on the control of synchronization in dynamical systems.
Synchronization is a widespread phenomenon observed in many natural and en-
gineered complex systems whereby locally interacting components of a complex
system tend to coordinate and exhibit collective behavior [R6, R7]. In dynamical
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systems, synchronization refers to the coordination phenomenon between multi-
ple weakly coupled independent oscillating systems that influences the overall
dynamics of the system. The role of synchronization control is to moderate this
behavior (e. g. , to drive the system into or out of synchronization) by applying an
external force or control signal [R6]. Synchronization control has significant impli-
cations for numerous application domains in engineering and science, including
communications [R8], teleoperations [R9, R10] and brain modeling [R11], to name
a few. A more specialized overview of synchronization in oscillators, and espe-
cially phase oscillators, can be found in [R12].

Several approaches exist for the control of dynamical systems, such as those
based on control theory [R13], mathematical and numerical optimization [R14]
and computational intelligence [R15] techniques. The “optimal control" methods
[R16], in particular, aim at driving and maintaining a dynamical system in a de-
sired state. This is generally achieved by finding a control law, in the form of a
set of differential equations, which optimizes (by maximizing or minimizing) a
cost function related to the control task. For instance, in a medical application, the
control of body tremors (e. g. , due to seizures) may be achieved by minimizing
the amplitude of body oscillations.

If the system is known in terms of a mathematical description, linear theory
can be used [R17, R18] in many cases to find the optimal control. However, for
nonlinear, extended and consequently complex systems, linear theory may fail. In
such cases, more general methods are needed to learn effective control laws. We
have been looking for the most general method using analytical expressions, or in
other words a method to infer control laws from an arbitrary domain which can
be defined in a general way. We identified evolutionary machine learning meth-
ods as a suitable source of algorithms. Specifically, we describe the application of
Genetic Programming (GP) [R19] to control synchronization in coupled networks,
including a hierarchical network of coupled oscillators. Unlike neural networks
and other black-box artificial intelligence methods that are commonly applied to
optimal control, GP allows dynamically learning complex control laws in an in-
terpretable symbolic form — a method that is referred as symbolic regression
[R20, R21, R22]. Previously, evolutionary algorithms have been successfully used
to optimize parameters for model-based control of synchronization [R10, R23]. In
contrast, we optimize the full expression, and not only parameters.

Previous attempts to use symbolic regression for the control of dynamical sys-
tems were mostly restricted to experiments [R1, R24, R25] without multi-objectivity
and without the optimization of constants involved in the equations. In contrast,
here we use a multi-objective formulation of GP, which allows learning much
sparser, as well as multiple Pareto (or non-dominated) solutions [R20, R21, R22].
The Pareto solutions can be further analyzed for insight using the conventional
analytical methods, such as bifurcation analysis — subject of our ongoing work.
We demonstrate the effectiveness of the proposed control approach through appli-
cation to different dynamical systems with growing level of complexity, ranging
from a single oscillator to a hierarchical network. For each system, we show the
useful optimal control terms found by symbolic regression to synchronize or de-
synchronize the oscillators. The application to the control of synchronization in a
hierarchical network of oscillators is motivated by brain disorder problems in the
medical domain. Body tremors occur when firing neurons synchronize in regions
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of brain [R4]. In a normal brain state, neurons are coupled to neighboring neu-
rons such that adjacent neurons influence mutually. If the firing is periodic, which
may appear due to the inherent dynamics of the excitable neurons, this mutual
influence may give rise to synchronization [R6, R26]. If the coupling term is very
large, this synchronization may extend over a whole region in our brain and thus
over many neurons. Eventually this collective firing leads to shaky movements of
hands, arms or the head, and is treated as a brain disorder. One remedy to this
problem is to implant a control device which resets the neurons and counteracts
the collective synchronization. An evident question then is how to design such a
controller which also minimizes design cost, energy consumption, or other med-
ical constraints. We model this phenomenon, in this work, as a set of oscillatory
units (representing neurons) coupled in a small hierarchical network, and apply
the proposed approach for learning the optimal control laws for this model.

To the best of our knowledge, this is the is first application of a multi-objective
GP to synchronization control in networks of coupled dynamical systems. The rest
of the paper is organized as follows: Section 4.2 provides the background informa-
tion on control of dynamical systems, the common approaches for optimal control
of dynamical systems, GP, and the specific methods used in our implementation
of GP. Fig. 4.2.2 provides the details of the common GP parameters and other ex-
perimental settings used to evaluate the proposed method. The specific parameter
settings are provided in each corresponding section. As a proof of concept, Sec-
tion 4.3 demonstrates the application of GP-based control using two simple bench-
mark dynamical system examples: a harmonic oscillator and the Lorenz system.
GP is used to learn control to bring these system into a chaotic state or back. Sec-
tion 4.4 presents our study of GP application to networked dynamic systems. Four
systems are tested in this section, including a simple coupled oscillator system;
and three systems of oscillators coupled, respectively, in a one-dimensional ring
network; a two-dimensional torus network; and a hierarchical network. The paper
concludes in Section 4.5.

4.2 methods

4.2.1 Optimal control of dynamical systems

Optimal Control

Continuous time
optimal control

Computational
optimal control

Dynamic pro-
gramming

Discrete time
optimal control

Figure 4.1: An overview of different types of optimal control.

The control of a dynamical system involves determining and manipulating the
trajectory of the system in phase space in order to drive the system to a desired
state. The control problem can be formulated as an optimization task with the ob-
jective to minimize a cost function defined in terms of the deviation of the state
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of the system from its desired one. In general, a formal definition of an optimal
control problem requires a mathematical model of the system, a cost function or
performance index, a specification of boundary conditions on states, and addi-
tional constraints.

If there are no path constraints on the states or the control variables, and if the
initial and final conditions are fixed, a fairly general continuous time optimal con-
trol problem reads: Find the control vector ~u : Rnx × [ts, t f ] 7→ Rnu that minimizes
the cost function

Γ = ϕ(~x(t f )) +
∫ t f

ts

L(~x(t),~u(~x, t), t)dt, (4.1)

subject to

~̇x = ~̃f (~x,~u, t), ~x(ts) = ~xs, (4.2)

where [ts, t f ] is the time interval of interest; ~x:[ts, t f ] 7→ Rnx is the state vector;
ϕ : Rnx 7→ R is a terminal cost function; L:Rnx ×Rnu ×R 7→ R is an intermediate
cost function; and ~̃f : Rnx ×Rnu ×R 7→ Rnx is a vector field. Note that Eq. (4.2) rep-
resents the dynamics of the system and its initial state. This problem definition is
known as the Bolza problem; and for ϕ(x(t f )) = 0 and ~u = ~̇x(t) it is known as the
Lagrange problem [R27]. Also note that the performance index Γ is a functional,
which is used to assign a real value to each control function ~u in a class.

The solutions to many optimal control problems cannot be found by analyti-
cal means. Over the years, many computational methods have been developed to
solve general optimal control problems. The choice of a method for addressing
an optimal control problem may depend on a number of factors, including the
types of cost functions, time domain, and constraints considered in the problem.
Fig. 4.1 shows different methods used in the optimal control of dynamical sys-
tems. Among these methods, the direct methods work by discretizing the control
problem and solving it using nonlinear programming approaches. Some methods
involve the discretization of the differential equations by defining a grid of N
points covering the time interval [ts, t f ], ts = t1 < t2 < . . . < tN = t f , and solving
these equations using, for instance, Euler, trapezoidal, or Runge–Kutta methods
[R28]. In this approach, the differential equations become equality constraints of
the nonlinear programming problem. Other direct methods involve the approxi-
mation of control and states using basis functions, such as splines or Lagrange
polynomials.

The continuous-time problems mentioned above have discrete time counter-
parts. These formulations are useful when the dynamics are discrete (for exam-
ple, a multistage system), or when dealing with computer controlled systems. In
discrete time, the dynamics can be expressed as a difference equation:

~x(k + 1) = ~f (~x(k),~u(k), k), ~x(N0) = ~xs,
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where k is an integer index, ~x(k) is the state vector, ~u(k) is the control vector,
and ~f is a vector function. The objective is to find a control sequence ~u(k), k =

N0, . . . , N f − 1, to minimize a performance index of the form:

Γ = ϕ(~x(N f )) +
N f−1

∑
k=N0

L(~x(k),~u(k), k).

See, for example, [R29, R30] for further details on discrete-time optimal control.
Dynamic programming is an alternative to the variational approach to optimal

control. It was proposed by Bellman in the 1950s and is an extension of Hamilton–
Jacobi theory. A number of books exist on these topics including [R29, R17, R30].
A general overview of the optimal control methods for dynamical systems can be
found in [R16]. For further details, readers are referred to [R31].

Unless otherwise stated, we approach the control problems presented in this
paper using discrete-time numerical methods. However, for most purposes, the
continuous-time formulation given in Eqs. (4.1) and (4.2) can be adopted un-
changed for our control methods. One major generalization, though, will be made
in the context of multi-objective optimization (Fig. 4.2.2); there Γ is replaced by a
vector of independent cost functionals ~Γ = (Γ1, . . . , ΓN). Another adjustment con-

cerns the specialization of ~̃f and ~u for the particular control scheme considered
here, as will be described next.

A feedback control scheme [R32] is adopted in this work to implement the con-
trol. Fig. 4.2 depicts the general architecture.

For this particular scheme Eq. (4.2) can be rewritten as:

~̇x = ~f (~x, t) +~a, ~x(ts) = ~xs,

where the uncontrolled system ~̇x = ~f (~x, t) is controlled by an additive actuator
term ~a, and the control function now depends on sensor measurements, given by
the output vector~s ∈ Rns :

~a = ~u(~s, t).

These measurements might be nonlinear functions of the state ~x. For simplicity,
external perturbations to the dynamic system are not considered here.

4.2.2 Genetic Programming

Genetic Programming (GP) [R19, R33] is an evolutionary algorithm in the class of
meta-heuristic search techniques that promise global optimization. Similar to the
Genetic Algorithm (GA), GP also uses the natural selection metaphor to evolve a
set, or so-called population, of solutions or individuals using a cost-based selec-
tion mechanism. The evolution occurs over a number of iterations, called gener-
ations. GP differs from GA mainly in the representation of a solution. A solution
in GP is generally represented using lists or expression trees. Expression trees are
constructed from the elements of two predefined primitive sets: a function set con-
sisting of mathematical operators and trigonometric functions, such as {+, -, *,

cos, sin}, and a terminal set consisting of variables and constants, such as { x,
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ẋ = f(x) + a

u(s, t)

sa

Figure 4.2: Sketch of the feedback control loop. The output of the dynamical system ~x is
measured by sensors ~s which are used as input to the control function ~u. The
control function, in turn, acts on the system via actuators ~a = ~u(~s, t) in order
to achieve a desired state. (External disturbances which can be incorporated
explicitly as additional inputs to the dynamical system and the control function
are not shown here.)

y, b}. Function symbols make up the internal nodes of a tree; and terminal sym-
bols are used in the leaf nodes. For example, Fig. 4.3 shows the tree representation
for the expression b · x + cos(y). All elements of the tree are drawn from the afore-
mentioned primitive sets: the variables and constants in the terminal set (x, y, and
b) form the leaves of the tree and the mathematical symbols in the functional set
(·, +, and cos) are used in forming the tree’s internal nodes.

+

*

b x

*

b x

Figure 4.3: Tree representation of the mathematical expression b · x + cos(y). The symbols
b, x, and y are taken from the terminal set and make up the leaf nodes of the
tree, whereas the symbols *, +, and cos, are symbols taken from the function
set, they make up the internal nodes.

Algorithm 2 Top level description of a GP algorithm
procedure main

G0 ← random(λ)
evaluate(G0)
t← 1
repeat

Ot ← breed(Gt−1, λ)
evaluate(Ot)
Gt ← select(Ot, Gt−1, µ)
t← t + 1

until t > T or Gt = good()
end procedure
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A standard GP algorithm, see 2, begins by generating a population of random so-
lutions G0. A random variable length solution, with a given maximum tree depth,
is generated by choosing operators, functions and variables from the two sets uni-
form randomly. Each solution is then evaluated in a given task, e. g. , learning
underlying relationship between a given set of variables. A cost is assigned to
each solution based on its performance in solving the task, e. g. how closely a
solution predicted the target function output. A new population of solutions Ot

is then generated by: (i) probabilistically selecting parent solutions from the ex-
isting population using a cost-proportional selection mechanism, and (ii) creating
offspring or new solutions by applying recombination (or crossover) and varia-
tion (or mutation) operators (see Fig. 4.4). This operation is repeated until a given
number of solutions (a fixed population size) is reached. A closure property is
always maintained to ensure only valid solutions are generated during both the
initialization and breeding operations. An elitist approach is commonly used for
improving the algorithm’s convergence speed. This involves copying some of the
high-performing parent solutions to the next-generation population Gt+1. The se-
lection, evaluation and reproduction processes are repeated until a given stopping
criteria is met, commonly a fixed number of maximum generations. For further
details about GP operation, readers are referred to [R34, R35].
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Figure 4.4: Breeding: Mutation and crossover operations on expression trees. Source:
Adapted from [R22]; used with permission.

The original motivation behind GP was to automatically produce computer pro-
grams, similar to a human strategy [R19]. However, since its inception, GP has
been applied to various tasks, including the traditional machine learning [R36]
and optimization [R15] tasks. In the context of learning dynamical system models
or control laws for dynamical systems, GP is a preferred choice for two main rea-
sons: First, the expression tree representation used by GP is human interpretable
and clearly provides an edge over the blackbox models learned by other computa-
tional approaches, such as artificial neural networks. Second, the GP solutions can
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be readily represented as mathematical equations and evaluated as control laws
for dynamical systems.

The application of GP to a general control problem (cf. Section 4.2.1), can be
formulated as a learning and optimization task. That is, we would like to learn
a control function to drive and keep a dynamical system in a desired state. This
requires minimizing a cost function (~Γ), e. g. , the difference between a given state
in time and the desired state. For most practical purposes, ~Γ can be expected to
have complex properties including non-linearity, multi-modality, multi-variability
and discontinuity. This poses a serious challenge to many traditional direct and
gradient methods. In turn, meta-heuristic methods, such as GP, are suitable candi-
dates for this task. Fig. 4.5 depicts how GP-based dynamic controller is used within
a feedback control loop, shown in Fig. 4.2.

ẋ = f(x) + a

u(s, t)

sa

Control law
factory

Γ

learning loop
Figure 4.5: Sketch of the machine learning loop. Using an evolutionary metaphor, the GP

algorithm generates a set of candidate control solutions ~u, called the popula-
tion. The candidate solutions are then evaluated in many realizations of the
control loop; the performance in each iteration is rated via a cost functional
Γ and fed back as a cost index into the GP algorithm. The algorithm uses the
performance rating to select the best solutions and evolve them into the next
generation of candidate solutions. This learning loop repeats until at least one
satisfactory control law is found (or other break conditions are met).

Multi-Objective Cost Evaluation

Defining a good cost function is a key process in GP that matter, which determines
the quality of a solution in the population. A common method for cost assignment
is to map solutions’ performances to scalar values within a given range, e. g. , [0, 1].
This method simplifies the ranking procedure needed for selection and reproduc-
tion processes. However, it also limits the number of performance objectives that
can be considered in the cost evaluation. A straight-forward way to address this
concern is to apply a weighted sum method that in turn still allows mapping multi-
ple performance objectives to scalar values. This type of methods not only require
manual tuning of weights but also hide trade-off details between conflicting objec-
tives. An alternative method to handle conflicting performance objectives in the
design of cost functions is to use the concept of Pareto dominance [R37]. Accord-
ing to this principle, a solution x dominates another solution y, if x performs better
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than y in at least one of the multiple objectives or criteria considered and at least
equal or better in all other objectives. This concept provides a convenient mech-
anism to consider multiple conflicting performance objectives simultaneously in
ranking solutions based on their domination score. The solutions with the highest
scores form the Pareto or efficient frontier. Fig. 4.6 provides an illustration of this
concept. Several very successful Evolutionary Multi-Objective Optimization (EMO)
algorithms are based on Pareto dominance [R38, R39, R40].

A

Γ1

Γ 2

Figure 4.6: Pareto front (blue dots connected by a black line) of a set of candidate solu-
tions evaluated with respect to two cost indexes Γ1 and Γ2. The Pareto-optimal
solutions are non-dominated with respect to each other but dominate all other
solutions. The region marked in light blue illustrates the notion of Pareto dom-
inance: solutions contained within that region are dominated by a solution A.

The standard GP is known to have a tendency to generate long and complicated
solutions in order to exactly match, or overfit, performance target (optimal per-
formance in our case). One way to address this issue is to design a cost function
where both the performance (e. g. , controller error in our case) and length of so-
lutions are considered explicitly in determining the quality of a solution. Such a
multi-objective cost mechanism allows introducing an explicit selection pressure
in the evolutionary process and preferring smaller well-performing solutions over
their longer counterparts [R22]. Following this line, a multi-objective cost evalua-
tion method is adopted in our implementation of GP in this work. In specific, we
adopt the mechanism used in Non-Dominated Sorting Algorithm II (NSGAII) [R38]
in our implementation of GP, which combines a non-dominated sorting mecha-
nism with an Euclidean distance-based metric to promote solution diversity and
spread or coverage of the entire Pareto front.
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Constant Optimization

The learning of numeral constants, if desired, is treated similar to the learning
of other terminal variables in the standard GP and an approximation may be
learned by sampling over a given range. However, this approach can severely
impair the convergence speed of GP as the search space essentially becomes in-
finite, especially for a continuous representation. Another approach, followed in
this work, is to use a traditional parameter optimization algorithm, such as the
Levenberg–Marquardt least squares method. By allowing designated symbolic
constants ~k = (k1, k2, . . .) in an expression tree, one can determine optimal val-
ues for these constants through parameter optimization. Thus, the calculation of
the numeral constants becomes another optimization task, with

~k∗ = argmin
~k

Γ(~u(~s,~k)),

and

Γ = Γ(~u(~s,~k∗)),

effectively introducing two combined layers of optimization.
To incorporate such a regression mechanism, the terminal set can be divided fur-

ther into an argument set and a constant set, where the argument set contains all
the terminal symbols that represent elements from the sensor vector ~s, which are
passed as arguments to the control function ~u. The constant set, on the other hand,
consists of all the designated constants representing elements from the constant
vector ~k. The actual construction of these sets depends on the dynamical system
under consideration and the type of the control task.

GP setup

This section gives a brief summary of the specific implementation details and the
common parameters used in our experimental setup. Hyperparameters have been
chosen empirically such that they lead to plausible and interpretable results on the
chosen set of examples. We did not optimize the hyperparameters for convergence.

All computer programs are developed in Python using open-source software
packages. The implementation of the GP algorithm uses a customized version of
the DEAP module [R41]. Particularly the routines for tree generation, selection, and
breeding were adopted unchanged. Most of the numerical algorithms in use are
provided by the numpy and scipy modules [R42, R43]. Notably, constant optimiza-
tion is conducted using the Levenberg-Marquardt least squares algorithm (scipy)
and numerical integration using the dopri5 solver (also scipy). Random num-
bers are generated using the Mersenne Twister pseudo-random number generator
provided by the random module [R44]. Finally, the sympy module is used for the
simplification of symbolic mathematical expressions generated from the GP runs
[R45]. The code can be found at [R46].

Table 4.1 gives an overview of the methods and parameters used for the GP runs.
Actual implementations can be found under the same name in the DEAP module.

The function set is chosen such that the operators and functions are defined
on R. This allows for an easy evaluation and application of the expressions built
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Table 4.1: General setup of the GP runs.

Function set {+,−, ·, sin, cos, exp}
Population size 500
Max. generations 20
MOO algorithm NSGA-II

Tree generation halfandhalf
Min. height 1

Max. height 4

Selection selTournament
Tournament size 2

Breeding varOr

Recombination cxOnePoint
Crossover probability 0.5
Crossover max. height 20

Mutation mutUniform
Mutation probability 0.2
Mutation max. height 20

Constant optimization leastsq

from this set and prevents additional handling of singularities. This choice, though,
restricts the number of possible solutions. In principle, the inclusion of other func-
tions and operators, such as log, √ , or 1/x, is conceivable and would lead to a
different space of potential solutions. Where possible, other GP parameter values
are chosen according to the best practices used by the GP community; see [R19,
R36, R34]. For more involved cases a second stopping criterion is used where the
learning is stopped when an error of the order of 10−5 is reached. Numerical inte-
gration is performed during cost assessment for all of the investigated dynamical
systems. As mentioned before, dopri5 is used as solver [R28]: This is an explicit
Runge–Kutta method of order (4)5 with adaptive step size. If not otherwise stated,
the maximum number of steps allowed during one call is set to 4000, the relative
tolerance to 10−6, and the absolute tolerance to 10−12. The pseudorandom num-
ber generator is seeded by a randomly selected unique seed for every GP run and
never reinitialized during the same run. The specific seed used in an experiment
will be explicitly stated in the corresponding setup description. Results obtained
from one experiment can thus be duplicated when this same seed is reused in
another run of the experiment.
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4.3 control of independent dynamical systems

In order to establish a baseline, explain the working of the proposed method and
determine its effectiveness, in this section we discuss the application of GP-based
control methodology to a well-understood example, the harmonic oscillator. It
is forced to a fixed point and the resulting control laws are analyzed in detail.
In addition, we investigated the application to the Lorenz system [R47], and the
results are found in the supplemental material.

4.3.1 Harmonic Oscillator

Consider a harmonic oscillator incorporated into the feedback control scheme dis-
cussed in Section 4.2.1. The dynamical system reads:

ẍ = −ω2
0x + u(x, ẋ), (4.3)

with the particular system parameters defined in the left half of Table 4.2. Ideal
sensors are assumed to measure position and velocity,~s = (x, ẋ); thus, the explicit
statement of the sensor function is omitted in the argument list of u.

The control target is to drive the harmonic oscillator toward a steady state rest-
ing position. This may be formulated into a cost function using the root mean
squared error (RMSE) of the trajectory x with reference to 0, that is,

Γ1 := RMSE(x, 0) =

√
1
N ∑N−1

i=0 (x(ti)− 0)2.

Since this is a numerical experiment, the RMSE is formulated in a discrete form,
with time steps ti = i T

N (i = 0, . . . , N − 1), and an oscillation period T = 2π
ω0

. A
time interval of twenty periods, as defined in Table 4.2, is large enough to get a
meaningful measurement of Γ1. The number of discrete time steps, n, is chosen
such that an accuracy of 50 samples per period is achieved.

Further, as discussed in Fig. 4.2.2, the expression length is used as the second
objective to bias GP learning towards smaller control laws:

Γ2 := length(u),

which, corresponds to the number of nodes in the expression tree for u.

Table 4.2: Harmonic oscillator system setup.

Dynamic system GP

ω0 exp(2) Cost functionals RMSE(x, 0)
x(t0) ln(4) Length(u)
ẋ(t0) 0 Argument set {x, ẋ}
t0, tn 0, 20 2π

ω0
Constant set {k}

n 1000 Seed 1730327932332863820
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These two cost functions are listed as part of the GP setup in the right half of
Table 4.2. Additionally, the argument set and constant set are specified. In this
case, the argument set consists of symbols representing position and velocity, the
two quantities measured by~s; the constant set consists of a single constant, k, that
is used to perform constant optimization. For easier readability, the notation does
not distinguish between primitive symbols and variable names, that is, x is used
instead of x, and ẋ instead of x_dot. The seed from Table 4.2 is used to initialize the
pseudorandom number generator of the GP algorithm and leads to the particular
solutions presented next. Other relevant parameters are stated in the general GP

setup, as described in Fig. 4.2.2.
The Pareto solutions for this particular setup are presented in Table 4.3 in as-

cending order sorted by Γ1 (Root Mean Squared Error (RMSE)). Not surprisingly,
more complex expressions tend to provide better control (in terms of lower RMSE).
One can also observe multiple mathematically equivalent solutions in the Pareto
set (e. g. , the two expressions of length 6). Although equivalent, these expressions
are distinct as far as the internal representation is concerned and the GP algorithm
treats them as independent solutions.

Table 4.3: Control of the harmonic oscillator: Pareto-front solutions.

RMSE Length Expression Constants

0.043973 10 k · (−k · x + x− ẋ) k = 151.907120
0.043976 8 k · (−k · x− ẋ) k = 151.232316
0.115862 7 exp(−k · x− ẋ) k = 3509.921747
0.123309 6 k · (−x− ẋ) k = 8.545559
0.123309 6 −k · (x + ẋ) k = 8.545559
0.123309 5 k · (x + ẋ) k = −8.545254
0.127432 3 k · ẋ k = −7.389051
0.241743 2 −ẋ
0.801177 1 k k = 25.229759

Fig. 4.7 shows the trajectories of two particular solutions from Table 4.3 (first
row and the third row from the bottom). Both look like underdamped cases of
the damped harmonic oscillator system. We will analyze both solutions in more
detail.

First consider u(x, ẋ) = k(−kx + x− ẋ). Inserting into the general Equation 4.3
for the controlled harmonic oscillator, one gets

ẍ = −ω2
0x + k(−kx + x− ẋ)

= −(ω2
0 + k2 − k)x− kẋ

= −ω̃2
0x− kẋ

(4.4)

with ω̃2
0 := ω2

0 + k2 − k. This is indeed the differential equation for the damped
harmonic oscillator. Since ω2

0 > 1, it follows that ω̃2
0 > 0 and the condition for the
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Figure 4.7: Control of the harmonic oscillator. The trajectories of two candidate solutions,
chosen from the Pareto front that drive the harmonic oscillator to zero are
shown. The best solution regarding Γ1 are shown in a green color. A simple yet
moderately good solution with respect to Γ1 is shown in red. For reference the
uncontrolled system is shown in blue. a Position, b speed of the oscillators.

underdamped case, k2

4 < ω̃2
0, is fulfilled for any k ∈ R. Using the initial values

from Table 4.2, we get the particular solution

x(t) = e−
k
2 t+2

(
cos(ωt) +

k sin(ωt)
2ω

)
, (4.5)

where ω2 := ω̃2
0 − k2

4 .
The form of solution (4.5) demands an answer to the specific value found for

k: One would expect large values of k � 151.9 (up to the numeric floating point
limit), since one of the goals of optimization is to drive the harmonic oscillator to
zero, and the particular solution (4.5) implies that x(t) −→ 0 as k→ ∞ (t ∈ R). Why
the least squares algorithm finds a considerably smaller value can be explained by
the choice of discretization made here. Fig. 4.8 illustrates how the optimal value k∗

depends on the discretization of the finite time interval, more specifically the step
size ∆t. Since the result of numerical integration is restricted by the resolution of
the time interval, starting at the initial position x(0) = e2, the shortest time span
possible for the trajectory to reach zero is ∆t. Thus, setting an upper bound k∗

when optimizing for the RMSE of the whole trajectory with respect to zero: values
larger k∗ would not improve the cost index any further.
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Figure 4.8: Control of the harmonic oscillator. Optimal parameter k∗ for the control law
u(x, ẋ) = k · (−k · x + x − ẋ) as determined by the least squares optimization
using different sampling rates fs. Starting at fs = 10 the optimal value for k
increases linearly with the sampling rate, k∗ ∼ fs ∼ 1/∆t.

As the second case, consider the solution u(x, ẋ) = k · ẋ. Again inserting into
(4.3)

ẍ = −ω2
0x + kẋ, (4.6)

one gets a damped harmonic oscillator system. The difference to the previous case
(4.5), is that the coefficient of x does not depend on k. This allows for a wider
range of solutions that cover all regimes of the damped harmonic oscillator (i.e.,
overdamped, underdamped, and diverging case). A numerical analysis of the RMSE

with respect to k shows the presence of a single minimum in the underdamped
regime; see Fig. 4.9. The result k∗ = −ω0 from constant optimization corresponds
almost exactly to the minimum position, as would be expected.
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Figure 4.9: Control of the harmonic oscillator. Minimum in RMSE with respect to k for
the control law u(x, ẋ) = −k · ẋ. The minimum, at k = −7.389 ≈ −ω0, lies
in the underdamped regime. Solutions in the overdamped regime, left of the
aperiodic borderline case (dashed line), result in strictly increasing RMSE as
k→ −∞. So do the diverging solutions for k > 0, as k→ ∞ (not shown).
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4.4 from coupled oscillators to networks

In this section, we extend the above study and demonstrate the application of GP-
based control to networks of oscillators. As discussed in the introduction, such
networks are used to model highly nonlinear complex systems, including the hu-
man brain. Given the latter as an application, the target structure is a hierarchical
network. Nevertheless we want to systematically investigate the results of our
method starting with a well-understood situation, namely two coupled oscillators.
To step toward a network structure, we extend this first to a one-dimensional ring,
or chain of coupled oscillators with periodic boundary conditions. Then we con-
sider the two-dimensional analogon, the torus. Eventually, we study a hierarchical
network which has been proposed as a simplified model for the human brain
[R48]. The two coupled oscillators and the network results are discussed below;
1D and 2D periodic structures are discussed in supplemental material, since there
is no essential new information in the results. Nevertheless one recognizes that
results are consistent.

The aim, for all systems under consideration, is to control the synchronization
behavior of the coupled oscillators. This can be done in two ways: starting from
a synchronization regime and forcing the system into de-synchronization or vice
versa, i.e., starting from a de-synchronized regime and forcing the system into
synchronization. Both control goals are evaluated for the systems investigated.

The synchronization of dynamical systems is a well-known phenomenon ex-
hibited by diverse ensembles of oscillators and oscillatory media [R6]. Here we
will focus on a simple, but popular representative, the van der Pol oscillator, also
used as a simple model for neurons. The van der Pol oscillator shows a nonlinear
damping behavior governed by the following second-order differential equation:

ẍ = −ω2x + αẋ
(
1− βx2) =: fvdP(x, ẋ), (4.7)

where x is the dynamical variable and ω, α, β > 0 are model parameters. The
parameter ω is the characteristic frequency of the self-sustained oscillations, that
is, the frequency at which the system tends to oscillate in the absence of any
driving or damping force. The parameter α controls the non-linearity of the system.
When α = 0, Eq. (4.7) becomes the harmonic oscillator. The damping parameter β

controls the dilation of the trajectory in the phase space. See Fig. 4.10.
A wide variety of coupling mechanisms exist. For hierarchical networks the

investigation can be restricted to linearly coupled van der Pol oscillators in x and ẋ,
which can be described by a global coupling constant and two coupling matrices.
An uncontrolled system of N coupled van der Pol oscillators can be stated as
follows:

ẍi = fvdP(xi, ẋi) + c1

N−1

∑
j=0

κijxj + c2

N−1

∑
j=0

ε ij ẋj (i = 0, . . . , N − 1) (4.8)

with initial conditions

xi(t0) = xi,0, ẋi(t0) = ẋi,0,
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Figure 4.10: Single van der Pol oscillator (with parameters ω = e2, α = 3, and initial
conditions x(0) = −0.25, ẋ(0) = 2.5.)

where c1,2 are the global coupling constants and (κij) and (ε ij) are the respective
coupling matrices. This allows for several types of coupling such as direct, dif-
fusive, and global coupling, or any other kind of network-like coupling. In the
following experiments, we will use diffusive coupling in ẋi for the topologies men-
tioned above. For GP, we use the same setup described above (Fig. 4.2.2).

4.4.1 Two Coupled Oscillators

The simplest system showing synchronization is a system of two dissipatively
coupled van der Pol oscillators [R6]:

ẍ0 = −ω2
0x0 + αẋ0

(
1− βx2

0
)
+ c (ẋ1 − ẋ0) ,

ẍ1 = −ω2
1x1 + αẋ1

(
1− βx2

1
)
+ c (ẋ0 − ẋ1) .

(4.9)

The coupling is restricted to ẋi, in which case the coupling constants from (4.8)
are set to c1 = 0, c2 = c, and the remaining coupling matrix reads as follows:

(ε ij) =

[
−1 1

1 −1

]
.

For the uncoupled oscillators, there are some parameter combinations (α, β) for
which there exist stable limit cycles with characteristic frequencies ω0,1. If the two
oscillators are coupled by a given coupling constant c 6= 0, as in (4.9), a range of
frequencies with ω0 6= ω1 emerge, where both oscillators effectively oscillate in
a common mode. This range of frequencies is called the synchronization region.
With the variation in the coupling constant, this region changes in width.

To illustrate this phenomenon, consider the particular parameter set α = 0.1,
β = 1, with fixed ω0 = 1.386 and varying ω1 in the range [ω0− 0.06, ω0 + 0.06]. By
plotting the observed frequency difference1 ∆Ω, exhibited by the two oscillators,
against the difference in their characteristic frequencies, ∆ω := ω1 − ω0, we can

1 The actual frequency Ω of an oscillator can be determined numerically by either taking the Fourier
transform of the trajectory x(t), or by counting the zero-crossings of x(t)− 〈x(t)〉.
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visualize the synchronization behavior of the system for a given coupling constant.
See Fig. 4.11. Regions of synchronization show up as horizontal segments at ∆Ω =

0 (also, note the symmetry about ∆ω = 0). If this is done for several values of c in
the range [0, 0.4], we can trace out the regions of synchronization. The result is a
typical V-shaped plateau, the Arnold tongue.

Figure 4.11: Synchronization plot of two coupled van der Pol oscillators with varying cou-
pling strength c. The horizontal V-shaped plateau is referred to as the Arnold
tongue; it represents regions of synchronization (The parameter set and initial
conditions used are stated in the left part of Table 4.4).

Fig. 4.11 shows the choice of appropriate parameters ω1 and c to set up the
system in different regimes for the purpose of control. The same approach is taken
for all the experiments presented in this section.

Similar to the example systems in Section 4.3 we add the control function u to
the equations (4.9) of the uncontrolled system, yielding the following formulation:

ẍ0 = −ω2
0x0 + αẋ0

(
1− βx2

0
)
+ c (ẋ1 − ẋ0) + u(~̇x),

ẍ1 = −ω2
1x1 + αẋ1

(
1− βx2

1
)
+ c (ẋ0 − ẋ1) + u(~̇x).

(4.10)

Here, u is added as a global actuator term with equal influence on both oscillators;
u may depend on ẋ0 and ẋ1, summarized in vector notation as ~̇x = (ẋ0, ẋ1).

Forced Synchronization

The system setup for forced synchronization of the two coupled van der Pol oscil-
lators is presented in Table 4.4. The parameters ω1 and c are chosen according to
Fig. 4.11, such that the uncontrolled system follows a de-synchronization regime
at a distance, ∆ω, approximately half the plateau from the closest synchronization
point. The initial conditions are the same for both oscillators. The stopping criteria
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are chosen heuristically; in particular, the runtime was chosen from preliminary
runs such that a typical control law can be found within that number of iterations.

The degree of de-synchronization is encompassed by the following cost func-
tional:

Γ1 := |Ω0 −Ω1|. (4.11)

It measures the difference in observed frequencies exhibited by the two oscillators,
with smaller differences reducing the cost on this objective.

As stated in the previous section, the actual frequencies Ω0 and Ω1 are numeri-
cally determined by counting zero crossings of the trajectory x− 〈x〉. This requires
a careful choice of the time range [t0, tn] of the observations, since the number of
periods NP fitting into this interval determines an upper bound in absolute accu-
racy (∼ 1

2NP
) of measuring Ω0, Ω1. Here, NP = 2000 is chosen to yield an absolute

accuracy well below 10−3 in the frequency range of interest.

Table 4.4: Two coupled oscillators: system setup for forced synchronization.

Dynamic system GP

ω0 ln(4) Cost functionals |Ω0 −Ω1|
ω1 ln(4) + 0.04 Length(u)
α, β, c 0.1, 1, 0.022 Argument set {ẋ0, ẋ1}
~x(t0) (1, 1) Constant set {k}
~̇x(t0) (0, 0) Seed 3464542173339676227
t0, tn 0, 2000 2π

ω0

n 40000

Results from the GP run are presented in Table 4.5. The algorithm stopped af-
ter one generation, providing six simple results optimally satisfying Γ1. Since the
equations (4.10) are symmetric in x0 and x1, unsurprisingly so are the resulting
control laws.

To demonstrate the control effect Fig. 4.12 shows the Kuramoto order parameter,
r, representing phase coherence, plotted over time [R49, R50]. The order parameter
is defined by

r =

∣∣∣∣∣
1
N

N−1

∑
j=0

eiϕj

∣∣∣∣∣ ,

with ϕj the continuous phase of the jth oscillator. It is computed from the an-
alytical signal of the trajectory x using the Hilbert transform, cf.[R51]. The con-
trolled system completely synchronizes (r ≈ 1) after a short initial period of de-
synchronization, while the uncontrolled system exhibits an oscillating graph.

One recognizes that the algorithm favors the least complex solution, using an
asymmetric term, either damping in x1 or x0. We can analyze qualitatively these so-
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Table 4.5: Two coupled oscillators: Pareto-front solutions for forced synchronization.

|Ω0 −Ω1| Length Expression

0.0 2 cos(ẋ1)

0.0 2 cos(ẋ0)

0.0 2 −ẋ0

0.0 2 sin(ẋ1)

0.0 2 −ẋ1

0.0 2 sin(ẋ0)

lutions, u(~̇x) = −ẋ0 and u(~̇x) = −ẋ1. Let us take arbitrarily the x0 term: Plugging
in u(~̇x) = −ẋ0 into the first oscillator equation from (4.10) we obtain

ẍ0 = −ω2
0x0 + αẋ0

(
1− βx2

0
)
+ c (ẋ1 − ẋ0)− ẋ0

= −ω2
0x0 + (α− c− 1)ẋ0 − αβẋ0x2

0 + cẋ1

= −ω2
0x0 + α̃1 ẋ0 − αβẋ0x2

0 + cẋ1,

with α̃1 = α− c− 1. Doing the same for the second oscillator equation

ẍ1 = −ω2
1x1 + αẋ1

(
1− βx2

1
)
+ c (ẋ0 − ẋ1)− ẋ0

= −ω2
1x1 + (c− 1)ẋ0 − αβẋ1x2

1 + (α− c)ẋ1

= −ω2
1x1 + α̃2 ẋ0 − αβẋ1x2

1 + c̃ẋ1,

with α̃2 = c− 1 and c̃ = α− c, one gets a similar solution in terms of the dominat-
ing driving component ẋ0. Since α̃1 ≈ α̃2 and α̃1 � c̃, c, the oscillators behave al-
most identically and, thus, are synchronized. Analogous observations apply when
analyzing the second control law, u(~̇x) = −ẋ1.
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Figure 4.12: Two coupled oscillators: Kuramoto order parameter, r, for forced synchroniza-
tion. Green: the controlled and blue: the uncontrolled system.
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Forced De-Synchronization

The system setup for forced de-synchronization is given in Table 4.6. The param-
eters ω1 and c are, again, chosen according to Fig. 4.11, this time, such that the
uncontrolled system follows a synchronization regime well inside the plateau. The
measure for the degree of synchronization is reciprocal to the previous case

Γ1 := exp(−|Ω0 −Ω1|). (4.12)

All the remaining parameters are the same as for forced synchronization (Ta-
ble 4.4).

Table 4.6: Two coupled oscillators: System setup for forced de-synchronization.

Dynamic system GP

ω0 ln(4) Cost functionals exp(−|Ω0 −Ω1|)
ω1 ln(4) + 0.015 Length(u)
α, β, c 0.1, 1, 0.022 Argument set {ẋ0, ẋ1}
~x(t0) (1, 1) Constant set {k}
~̇x(t0) (0, 0) Seed 2590675513212712687
t0, tn 0, 2000 2π

ω0

n 40000

Results from the GP run are shown in Table 4.7. Two aspects of the results indi-
cate that de-synchronizing the pair of oscillators is a more demanding task: First,
the GP algorithm comes up with increasingly long expressions to achieve improve-
ments in Γ1; second, constant optimization seems to fail in all cases where a con-
stant is present. (This is expressed by a value k = 1, which corresponds to the
initial guess of the optimization procedure.) Still, the oscillating Kuramoto pa-
rameter, r, of the controlled system in Fig. 4.13 shows that the best solution with
respect to Γ1 performs well in de-synchronizing the oscillators.

The control law u(~̇x) = −ẋ0 · exp(exp(k) + cos(k)) = −k̃ẋ0, with k̃ ≈ 26, is
almost the same as the solution analyzed in the previous subsection, but with a
different coefficient. This is at first sight counterintuitive, but can be explained
roughly by the non-uniqueness we provoke with our cost function: To force syn-
chronization, we require only that the phase difference is small (close to zero). This
is achieved by the added damping term. The very strong damping brings the two
oscillators basically to zero so fast that the mutual coupling does not play a role
and the phase difference is free. To bring the oscillators from de-synchronization
to synchronization is achieved by a different mechanism; the damping is moder-
ate such that excess energy is dissipated and the oscillators are in the right regime
to synchronize. The detailed analysis of the dynamics is subject of ongoing work,
where we analyze the bifurcations occurring using AUTO. Preliminary results af-
firm that the interpretation given here is correct.

One would expect the GP algorithm to directly generate the simpler — thus
better suitable— solution u(~̇x) = −kẋ0, with k = 26. One possible explanation why
this is not immediately found might lie in the constant optimization algorithm: On
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failure, the least squares algorithm returns the result of the last internal iteration.
This return value might be an entirely inadequate value for k, which, in turn,
could lead to an exploding cost index Γ1 when integrating the dynamic system
(4.10), hence disqualifying the corresponding solution.

Table 4.7: Two coupled oscillators: Pareto-front solutions for forced de-synchronization.

exp(−|Ω0 −Ω1|) Length Expression Constant

0.248 9 −ẋ0 · exp(exp(k) + cos(k)) k = 1
0.258 7 cos(exp(ẋ1 + cos(cos(ẋ0))))

0.875 4 cos(exp(exp(ẋ0)))

0.912 3 sin(exp(ẋ0))

0.999 2 exp(k) k = 1
1.000 1 ẋ1

1.000 1 ẋ0

1.000 1 k k = 1

0.247672 13 −ẋ0 · exp(−ẋ0) · exp(exp(k))− exp(ẋ0) k = 1.00
0.386623 12 − exp(ẋ0)− cos(exp(exp(k)) · exp(sin(ẋ0))) k = 1.00
0.398873 11 sin(exp(exp(ẋ0) + cos(k)) · exp(sin(ẋ0))) k = 1.00
0.606677 8 sin(exp(exp(k)) · exp(sin(ẋ0))) k = 1.00
0.648420 7 sin(exp(exp(ẋ0) + cos(k))) k = 1.00
0.806083 6 − exp(ẋ0)− cos(k) k = 1.00
0.911933 3 sin(exp(ẋ0)) k = 1.00
0.998615 2 exp(k) k = 1.00
1.000000 1 ẋ1 k = 1.00
1.000000 1 ẋ0 k = 1.00
1.000000 1 k k = 1.00

4.4.2 Hierarchical Network

In a last step the dynamic system is extended to a set of van der Pol oscillators
connected in a scale-free network topology. A scale-free network is a hierarchical
network whose degree distribution follows a power law, at least asymptotically.
There exists a large variety of possible models for creating networks which are
able to reproduce the unique properties of the scale-free topology. One simple
model, resorted to here, is the Dorogovtsev–Goltsev–Mendes model. It is used to
produce a network of N = 123 nodes as depicted in Fig. 4.14.

The van der Pol oscillators are indexed in descending order by their correspond-
ing node degree. For example, the three yellow nodes of degree 32 (highest) in
Fig. 4.14 are labeled i = 0, 1, 2, the light orange nodes of the next lowest degree
16, i = 3, 4, 5, and so on. The particular order of nodes of the same degree is not
important due to the symmetry of the network.
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Figure 4.13: Two coupled oscillators: Kuramoto order parameter, r, for forced de-
synchronization. Green: the controlled and blue: the uncontrolled system. The
horizontal axis is scaled to a limited time window in order to make the oscil-
lations visible.

“Sensors” are placed on the oscillators labeled i = 0, . . . , 11 measuring ẋi. This
incorporates all nodes with a node degree of 32 or 16, and five nodes with a node
degree of 8. Hence, the control function u can potentially make use of measure-
ments from nodes at central points of the topology. Control, on the other hand, is
exerted indiscriminately on all nodes of the system

Forced Synchronization

Table 4.8 shows the setup. As in the related cases before, the particular parameter
set chosen puts the uncontrolled system in a de-synchronization regime. Sensors
are placed on the oscillators labeled i = 0, . . . , 11 measuring ẋi. This incorporates
all nodes with a node degree of 32 or 16, and five nodes with a node degree of
8. Hence, the control function u can potentially make use of measurements from
nodes at central points of the topology. Control, on the other hand, is excerted
indiscriminately on all nodes of the system

ẍi = fvdP(xi) + c
N

∑
j=1

ε ij ẋj + u(x0, . . . , x11) (i = 0, . . . , N − 1),

with N = 123. Constant optimization is performed on a single constant k.
The GP run stopped after one generation with a Pareto front consisting of a

single optimal result. See Table 4.9. The control law found, is again, sinusoidal
in nature. It uses the input from node i = 7, which is of node degree eight, i.e.,
on an intermediate level in the topology. Fig. 4.15 shows that the highly distorted
phases from the uncontrolled system can be partially aligned. Frequencies are ap-
proximately matched and amplitudes are amplified by a factor ×1.5 with respect
to the uncontrolled system. A plot of the Kuramoto order parameter r in Fig. 4.16

indicates that there is a small variation among the phases in the controlled system;
hence, a perfect phase lock is not achieved.
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Figure 4.14: Hierarchical network: Dorogovtsev–Goltsev–Mendes topology of generation
five. Starting out from two connected nodes at generation 0, one new node is
added in between every existing pair of nodes per generation. Hence, the node
degree at generation n > 0 ranges from 21, . . . , 2n. The degree distribution,
that is, the fraction P(k) of nodes in the network having k connections to
other nodes goes for large values of k as P(k) ∼ k−2 (Nodes are color-coded
by node degree: yellow: 32, light orange: 16, orange: 8, dark orange: 4, red: 2).

Table 4.8: Oscillators in a hierarchical network: system setup for forced synchronization.

Dynamic system GP

α, β, c 0.1, 1, 5.6 · 10−2 Cost functionals std(~Ω)

ω, ∆ω ln(4), 8 · 10−2 Length(u)
ωi linspace(ω− ∆ω, ω + ∆ω, 123) Argument set {ẋi}i=0,...,11

~xi(t0) 1 (i = 0, . . . , 122) Constant set {k}
~̇xi(t0) 0 (i = 0, . . . , 122) Seed 5925327490976859669
t0, tn 0, 2000 2π

ω

n 40000

Forced De-Synchronization

For the case of forced de-synchronization, the system parameters are set as in
Table 4.10. The network structure stays as in the previous section.

The previous sections showed increasingly complex control from two oscillators,
a ring of oscillators, to a torus. One might expect an even more complex control for
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Table 4.9: Oscillators in a hierarchical network: Pareto-front solutions for forced synchro-
nization.

std(~Ω) length expression

0.0 2 sin(ẋ7)
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Figure 4.15: Oscillators in a hierarchical network. a uncontrolled system; b Pareto-front
solution, u(~̇x) = sin(ẋ7), for forced synchronization.
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Figure 4.16: Oscillators in a hierarchical network. Kuramoto order parameter r for the
uncontrolled system (blue) and the system controlled by the best solution,
with respect to Γ1 (green).

a hierarchical network. Indeed, in Table 4.11 the best control laws are complicated
combinations of sine, multiplication and exponential terms. As explained above,
the lowest indices indicate highest node degree. We observe that our algorithm
puts control on nodes with high degree - the hubs. This is perfectly logical: If the
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Table 4.10: Oscillators in a hierarchical network: system setup for forced de-
synchronization.

Dynamic system GP

α, β, c 0.1, 1, 5.6 · 10−2 Cost functionals exp(std(~Ω))

ω, ∆ω ln(4), 2 · 10−2 Length(u)
ωi linspace(ω− ∆ω, ω + ∆ω, 123) Argument set {ẋi}i=0,...,11

~xi(t0) 1 (i = 0, . . . , 122) Constant set {k}
~̇xi(t0) 0 (i = 0, . . . , 122) Seed 8797055239111497159
t0, tn 0, 2000 2π

ω

n 40000

hubs are de-synchronized, the whole system is desynchronized. It may still be
that the hubs and their connected subnet are synchronized. This is not contained
in our objective, and again, we find that our machine learns exactly the way it is
told (Figs 4.16, 4.15). If we want to control global de-synchronization in each single
oscillator, we need to design the cost function with more care!

Table 4.11: Oscillators in a hierarchical network: best solutions for forced de-
synchronization.

Synchronicity Length Expression Constant

0.722 17 −(−ẋ3 + (−ẋ8)) + (ẋ11 + ẋ8 + sin(ẋ9)) ·
(− exp(ẋ0))

0.727 16 −(−ẋ3 + (−ẋ8)) + (ẋ11 + ẋ5 + ẋ8) ·
(− exp(ẋ11))

0.749 13 ẋ11 + ẋ8 + (ẋ11 + ẋ8 + ẋ9) · (− exp(ẋ6))

0.886 4 − exp(sin(ẋ0))

0.886 3 − exp(ẋ0)

0.997 2 −ẋ8

1.000 1 k k = 1
1.000 1 ẋ4
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Figure 4.17: Oscillators in a hierarchical network. a: uncontrolled system; b: Pareto-front
solution, u(~̇x) = ẋ3 + ẋ8 − (ẋ11 + ẋ8 + sin(ẋ9)) · exp(ẋ0), for forced de-
synchronization.
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Figure 4.18: Oscillators in a hierarchical network. Kuramoto order parameter r for the
uncontrolled system (blue) and the system controlled by the best solution,
with respect to Γ1 (green).

4.5 conclusions and future work

Our main question, in this work, concerns the control of a synchronization in
systems of coupled oscillators. We presented a computational intelligence-based
framework for inferring optimal control laws to achieve this goal. A multi-objective
genetic programming algorithm with regression-based constant estimation is used
to learn the control laws dynamically.

We first tested our method on a well-known control problem in dynamical sys-
tems: Drive a damped harmonic oscillator to a limit cycle and a stable one to
a fixed point. We then applied our control approach to dynamical systems com-
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posed of networks of coupled oscillators, starting from a system of two coupled
van der Pol oscillators up to a hierarchical network consisting of a few hundred os-
cillators. In comparison to other methods like generalized linear regression meth-
ods, GP is relatively complex to use for a beginner, however the effort pays off if
general solutions are needed. Due to the evolutionary nature of the method, it is
not guaranteed that the global optimum is found, which in our case was not a
problem, but may well be in other situations.

As a result we find terms of different complexity leading to different levels of
synchronization control, where synchronization is measured using the Kuramoto
parameter. The results clearly demonstrate the ability of GP-based control to bring
a desynchronized system to a synchronization state and vice versa. For forced
synchronization, in any setup we find simple control laws, suggesting a single
oscillator taking over the control and governing the overall dynamics. For forced
desynchronization, laws of increasing complexity are found, where the complexity
increased with that of the system complexity.

The results in all setups highlight the importance of designing the objective
functions appropriately. In the current setup, we simply relied on learning the
control laws by minimizing the error with the desired output. We did not specify
any symmetry or energy function to be minimized, nor did we restrict the number
of oscillators to be controlled. These details appear to be important for using our
methods in a real-world application. The difficulty in the very general approach is
recognized by the asymmetry of the control laws, which is a disadvantage in our
opinion. One thus has to carefully analyze the objectives and may upgrade them
step by step if unwanted solutions occur.

Further work will extend current methods in several ways: a subsequent auto-
matic stability analysis would be performed for the numerical experiments. This
way one can immediately distinguish stable and useful control dynamics from un-
stable ones. Second, we aim to look into the design of better objective functions,
taking into consideration prior domain knowledge, e. g. in the form of additive
symmetry terms. Finally, we plan to integrate methods in our framework that
would search for the optimal sensor (for measurement) and pressure (for actua-
tion) points in the network for a better control.
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[R24] Vladimir Parezanović, Laurent Cordier, Andreas Spohn, Thomas Duriez, Bernd R. Noack,
Jean-Paul Bonnet, Marc Segond, Markus Abel, and Steven L. Brunton. “Frequency
selection by feedback control in a turbulent shear flow.” In: J. Fluid Mech. 797 (May 2016),
pp. 247–283. doi: 10.1017/jfm.2016.261.

[R25] Thomas Duriez, Steven L. Brunton, and Bernd R. Noack. Machine Learning Control –
Taming Nonlinear Dynamics and Turbulence. Springer International Publishing, 2017. doi:
10.1007/978-3-319-40624-4.

[R26] Daniel A. Wiley, Steven H. Strogatz, and Michelle Girvan. “The size of the sync basin.” In:
Chaos 16.1 (Mar. 2006), p. 015103. doi: 10.1063/1.2165594.

[R27] Herman H. Goldstine. A History of the Calculus of Variations from the 17th through the 19th
Century. Springer New York, 1980. doi: 10.1007/978-1-4613-8106-8.

[R28] William H Press. Numerical recipes: The art of scientific computing. 3rd ed. Cambridge
university press, 2007.

[R29] Frank L. Lewis, Draguna L. Vrabie, and Vassilis L. Syrmos. Optimal Control. Lewis/Optimal
Control 3e. John Wiley & Sons, Inc., Jan. 2012. doi: 10.1002/9781118122631.

[R30] A. E. Bryson (Jr) and Y. Ho. Applied Optimal Control. Halsted Press, 1975.

[R31] M. Athans and P. L. Falb. Optimal Control: An Introduction to the Theory and Its Applications.
Dover Publications, 2006.

https://doi.org/10.1109/81.633887
https://doi.org/10.1109/tfuzz.2011.2143417
https://doi.org/10.1007/s11071-014-1589-5
https://doi.org/10.1016/j.tins.2007.05.004
https://doi.org/10.1073/pnas.1212134110
https://doi.org/10.1007/b98874
https://doi.org/10.4249/scholarpedia.5354
https://doi.org/10.1007/0-387-29903-3
https://doi.org/10.1002/9783527622313
https://doi.org/10.1126/science.1165893
https://doi.org/10.1109/tevc.2008.926486
https://doi.org/10.1103/physreve.94.012214
https://doi.org/10.1016/j.asoc.2014.07.020
https://doi.org/10.1017/jfm.2016.261
https://doi.org/10.1007/978-3-319-40624-4
https://doi.org/10.1063/1.2165594
https://doi.org/10.1007/978-1-4613-8106-8
https://doi.org/10.1002/9781118122631


94 synchronization control of oscillator networks using symbolic regression

[R32] Gene F. Franklin, J. Da Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic
Systems. 7th ed. Pearson, 2014.

[R33] Nichael Lynn Cramer. “A representation for the adaptive generation of simple sequential
programs.” In: Proceedings of an International Conference on Genetic Algorithms and the
Applications. Ed. by John J Grefenstette. Psychology Press, 1985, pp. 183–187.

[R34] Genetic Programming. Springer Berlin Heidelberg, 1999. doi: 10.1007/3-540-48885-5.

[R35] Xin-She Yang. “Metaheuristic Optimization.” In: Scholarpedia 6.8 (2011), p. 11472. doi:
10.4249/scholarpedia.11472.

[R36] Sean Luke. Essentials of Metaheuristics. 2nd ed. Lulu, 2013. url:
http://cs.gmu.edu/%5Ctextasciitilde%20sean/book/metaheuristics/.

[R37] Drew Fudenberg and Jean Tirole. Game theory. MIT press, 1991.

[R38] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. “A Fast Elitist Non-Dominated Sorting
Genetic Algorithm for Multi-Objective Optimisation: NSGA-II.” In: PPSN VI: Proceedings
of the 6th International Conference on Parallel Problem Solving from Nature. Springer-Verlag,
2000, pp. 849–858.

[R39] J. Knowles and D. Corne. “The Pareto archived evolution strategy: A new baseline
algorithm for Pareto multiobjective optimisation.” In: Proceedings of the 1999 Congress on
Evolutionary Computation-CEC99 (Cat. No. 99TH8406). IEEE. doi:
10.1109/cec.1999.781913.

[R40] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. “SPEA2: Improving the strength
Pareto evolutionary algorithm.” In: TIK-Report. Vol. 103. Eidgenössische Technische
Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze
(TIK), 2001. doi: 10.3929/ethz-a-004284029.

[R41] François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc Parizeau,
and Christian Gagné. “Deap. enabling nimbler evolutions.” In: SIGEVOlution 6.2 (Feb.
2014), pp. 17–26. doi: 10.1145/2597453.2597455.

[R42] Stéfan van der Walt, S Chris Colbert, and Gaël Varoquaux. “The NumPy Array: A
Structure for Efficient Numerical Computation.” In: Comput. Sci. Eng. 13.2 (Mar. 2011),
pp. 22–30. doi: 10.1109/mcse.2011.37.

[R43] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for
Python. 2001. url: http://www.scipy.org/ (visited on 04/29/2018).

[R44] Makoto Matsumoto and Takuji Nishimura. “Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator.” In: ACM Trans. Model.
Comput. Simul. 8.1 (Jan. 1998), pp. 3–30. doi: 10.1145/272991.272995.

[R45] SymPy Dev Team. SymPy: Python library for symbolic mathematics. 2016. url:
http://www.sympy.org.

[R46] Markus Quade, Julien Gout, and Markus Abel. glyph - Symbolic Regression Tools. Version
0.3.5. Jan. 2018. url: https://github.com/Ambrosys/glyph. doi:
10.5281/zenodo.1156654.

[R47] Edward N. Lorenz. “Deterministic Nonperiodic Flow.” In: J. Atmos. Sci. 20.2 (Mar. 1963),
pp. 130–141. doi: 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.

[R48] Ed Bullmore and Olaf Sporns. “Complex brain networks: Graph theoretical analysis of
structural and functional systems.” In: Nat Rev Neurosci 10.3 (Feb. 2009), pp. 186–198. doi:
10.1038/nrn2575.

[R49] Yoshiki Kuramoto. “Lecture Notes in Physics.” In: International Symposium on Mathematical
Problems in Theoretical Physics. Ed. by H. Araki. Vol. 39. New York: Springer, 1975, p. 420.

[R50] Yoshiki Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer Berlin Heidelberg,
1984. doi: 10.1007/978-3-642-69689-3.

[R51] Leon Cohen. Time Frequency Analysis: Theory and Applications. 1st ed. Prentice Hall, 1994.

https://doi.org/10.1007/3-540-48885-5
https://doi.org/10.4249/scholarpedia.11472
http://cs.gmu.edu/%5Ctextasciitilde%20sean/book/metaheuristics/
https://doi.org/10.1109/cec.1999.781913
https://doi.org/10.3929/ethz-a-004284029
https://doi.org/10.1145/2597453.2597455
https://doi.org/10.1109/mcse.2011.37
http://www.scipy.org/
https://doi.org/10.1145/272991.272995
http://www.sympy.org
https://github.com/Ambrosys/glyph
https://doi.org/10.5281/zenodo.1156654
https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://doi.org/10.1038/nrn2575
https://doi.org/10.1007/978-3-642-69689-3


5G LY P H : S Y M B O L I C R E G R E S S I O N T O O L S

by Markus Quade1, Julien Gout1, Markus Abel1

1 Ambrosys GmbH, David-Gilly Straße 1, 14469 Potsdam, Germany

This paper has been submitted to Journal of Open Research Software. For typesetting
purposes meta-information and the content of the original manuscript have been split. The
meta-information can be found in Section B.1.

Abstract

We present Glyph - a package for genetic programming based symbolic re-
gression. Glyph is designed for usage let by numerical simulations let by
real world experiments. For experimentalists, glyph-remote provides a sepa-
ration of tasks: a clear interface splits the genetic programming optimization
task from the evaluation of an experimental (or numerical) run. Thus domain
experts should be able to employ symbolic regression in their experiments
with ease, even if they are not expert programmers. Python is ideal for these
purposes, hence Glyph is implemented in Python.

Keywords— Symbolic Regression, Genetic Programming, Machine Learning Con-
trol, MOGP, Python

5.1 introduction

Symbolic regression[S1] is an optimization method to find an optimal represen-
tation of a function. The method is “symbolic”, because building blocks of the
functions, i.e. variables, primitive functions, and operators, are represented sym-
bolically on the computer. Genetic Programming (GP) [S2] can be implemented to
find such a function for system identification[S3, S4] or fluid dynamical control[S5,
S6]. Glyph is an effort to separate optimization method and optimization task al-
lowing domain-experts without special programming skills to employ symbolic
regression in their experiments. We adopt this separation of concerns implement-
ing a client-server architecture; a minimal communication protocol eases its use.
Throughout this paper “experiment” is meant as a synonym for any symbolic
regression task including a lab-experiment, a numerical simulation or data fitting.

Previous work on system identification and reverse engineering of conserva-
tion laws was reported in[S1, S7]. Modern algorithms also include multi objective
optimization[S4] and advances like age fitness based genetic programming[S8] or
epigenetic local search [S9]. There exist various approaches to the representation of
multi IO problems, including stack- or graph-based representations and pointers
[S9, S10].
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5.2 implementation and architecture

Glyph is intended as a lightweight framework to build an application finding
an optimal system representation given measurement data. The main application
is intended as system control, consequently a control law is determined and re-
turned. Glyph is built on the idea of loose coupling such that dependencies can
be released if wanted.

ẋ = f(x) + a

u(s, t)

sa

Control law
factory

Γ

learning loop
Figure 5.1: Left: A typical closed loop control task is sketched. Given a system ~̇x = ~f (~x),

some measurements s and a control law ~u(~s, t) and we can control the system
by adding the actuation ~a = ~u(~s, t). Right: GP-based symbolic regression finds
different candidate control laws. Each candidate solution is given a fitness score
Γ which is used to compare different solutions and to advance the search in
function space. Figure adapted from [S5] with permission.

A typical control application consists of a system and its controller, possibly sep-
arated, cf. Fig. 5.1. Glyph has three main abstractions to build such an application:
i) the assessment, which holds all methods and data structures belonging to the
experiment, ii) the Genetic Programming (GP) which is responsible for the system
identification, and iii) the application components, which constitute an applica-
tion.

5.2.1 Building an Application

An application consists of a GP callable, the gp_runner, an assessment callable for
input, the assessment_runner, and the application which uses both of these classes
and holds all application-relevant details. A command-line application is built by

1 assessment_runner = AssessmentRunner(assess_args)
2 gp_runner = glyph.application.GPRunner(gp_args)
3 app = command_line_application(app_args)

The assessment_runner has one argument, the parallel_factory which imple-
ments a map() method, possibly parallel. For an application one needs to imple-
ment setup, assign_fitness, and measure: setup is self-explaining, measure is a key
method which takes as input a set of measurement functions and combines them
into a tuple of callable measures for multi-objective optimization. The measures
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are used eventually in assign_fitness where the return values are used to assign
a fitness to an individual from GP. The interface is freely extensible. A gp_runner
forwards the evolutionary iteration. It takes as arguments, gp_args, an individual
class, a gp_algorithm, and an assessment_runner. The individual class contains the
representation of a function, the individual; it is currently based on Deap’s tree-
based implementation. The gp_algorithm takes care for the breeding and selection
steps, its principles are described in [S2].

The application is run in the main function with app.run(). Each of the high-
level functions contains a bunch of next-level instructions, and can be built with a
minimal assembly of methods.

In the application and gp_runner, the user has freedom to add functionality
using the list of callbacks in the arguments, say, to implement other logging or
streaming options. This allows for very flexible programming. We constructed the
components that way to allow users to specialize for their particular experiments
and possibly increase performance or extend the symbolic regression, e. g. by re-
placing the deap tree-based representation of an individual.

Remote Control

One main objective of glyph is its use in a real experiment. In this case, the GP loop
is separated from the experimental loop in a client-server setup using ZeroMQ
[S11], cf. Fig. 5.2.

Optimization Task

zmq Server

Optimization Method

zmq Client

Experiment GP loop
zmq.REQ

zmq.REP
Hardware

Figure 5.2: Sketch of the implementation of the experiment - GP communication as client-
server pattern. Left: single experiment server plus event handler. Right: GP
client. Both parts are interfaced using ZeroMQ. As described in Section 5.2.2
the GP program performs requests, e. g. the evaluation of a candidate solution.
The event handler takes care of these requests and eventually forwards them
to the hardware.

Consequently, one should implement the interface to the experiment using the
protocol described in Section 5.2.2. Having the implementation of the experiment,
the server, one needs to implement the client, i.e. the interface to the gp_runner. In
essence this means connecting the correct sockets with ZeroMQ and ensuring that
the gp_runner and the assessment_runner use the corresponding sockets. Then,
the main application is assembled as before, now using a RemoteApp for the main
application, which in turn uses a gp_runner, which then uses now a RemoteAssess-
mentRunner. That is it, we can run remotely our GP evaluation from some client
and the experiment in place of the experiment.
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5.2.2 Communication Protocol

The communication is encoded in json [S12]. A message is a json object with two
members:

1 {
2 "action": "value",
3 "payload": "value",
4 }

The possible values are listed in Table 5.1. The config action is performed prior

Action name Payload Expected return Value

CONFIG – config settings
EXPERIMENT list of expressions list of fitness value(s)
SHUTDOWN – –

Table 5.1: Communication protocol.

to the evolutionary loop. Entering the loop, discovered solutions will be batched
and a experiment action will be requested. You can configure optional caching for
re-discovered solutions. This includes persistent caching between different runs.
The shutdown action will let the experiment program know that the GP loop is
finished and you can safely stop the hardware.

Configuration settings are sent as a json object in key:value form, where the keys
contain the option to be set, there is only one mandatory option: the primitive set.
To configure the primitive set, the primitive names are passed as content of the
key config, whose values specify the corresponding arities, both fields described
again as json object.

The experiment action sends a list of expressions, encoded as string in prefix
(also: polish) notation [S13]. For each expression sent, the experiment returns a
fitness tuple.

Additionally, one can define the type of algorithm, error metric, representation,
hyper-parameters, etc. A comprehensive up to date list can be found at http:

//glyph.readthedocs.io/en/latest/usr/glyph_remote/.

5.2.3 Application example: control of the chaotic Lorenz System

In the following, we demonstrate the application and use of Glyph by the deter-
mination of an unknown optimal control law for a chaotic system. As an example,
we study the control of the potentially chaotic Lorenz system. Chaotic systems are
very hard to predict and control in practice due to their sensitivity towards small
changes in the initial state which may lead to exponential divergence of trajecto-
ries. The Lorenz model [S14] consists of a system of three ordinary differential
equations:

ẋ = s(y− x)

ẏ = rx− y− xz

ż = xy− bz,

(5.1)

http://glyph.readthedocs.io/en/latest/usr/glyph_remote/
http://glyph.readthedocs.io/en/latest/usr/glyph_remote/


5.2 implementation and architecture 99

with two nonlinearities, xy and xz. Here x, y, and z make up the system state and
s, r, b are parameters: s is the Prandtl number, r is the Rayleigh number, and b is
related to the aspect ratio of the air rolls. For a certain choice of parameters and
initial conditions chaotic behavior emerges.

Here we present two examples where the target is to learn control of bring a
chaotic Lorenz system to a complete stop, that is, (x, y, z) = 0 (t ∈ IR). In the first
example, the actuator term is applied to ẏ. This allows for a more direct control of
the system, since y appears in every equation of (5.1) and, thus, influence all three
state components, x, y, and z. In the second example the actuator term is applied
to ż, which leads to a more indirect control, since the flow of information from z
to x is only through y.

Table 5.2: General setup of the GP runs.

population size 500
max. generations 20
MOO algorithm NSGA-II

tree generation halfandhalf
min. height 1

max. height 4

selection selTournament
tournament size 2

breeding varOr

recombination cxOnePoint
crossover probability 0.5
crossover max. height 20

mutation mutUniform
mutation probability 0.2
mutation max. height 20

constant optimization leastsq

The system setup is summarized in Table 5.2 and Table 5.3. When r = 28, s = 10,
and b = 8/3, the Lorenz system produces chaotic solutions (not all solutions are
chaotic). Almost all initial points will tend to an invariant set – the Lorenz attractor
– a strange attractor and a fractal. When plotted the chaotic trajectory of the Lorenz
system resembles a butterfly (blue graph in Fig. 5.3). The target of control is, again,
formulated as RMSE of the system state with respect to zero (separately for each
component)

Γ1 := RMSE(x, 0), Γ2 := RMSE(y, 0), Γ3 := RMSE(z, 0).

The control function u can make use of ideal measurements of the state compo-
nents. Constant optimization is performed on a single constant k. The respective
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Table 5.3: Control of the Lorenz system: system setup.

dynamic system GP

s 10 cost functionals RMSE(x, 0)
r 28 RMSE(y, 0)
b 8/3 RMSE(z, 0)
x(t0) 10.0 length(u)
y(t0) 1.0 argument set {x, y, z}
z(t0) 5.0 constant set {k}
t0, tn 0, 100 seed (in y) 4360036820278701581
n 5000 seed (in z) 2480329230996732981

GP runs for control in y and control in z are conducted with the corresponding
random seeds labeled “in y” and “in z”.

control in y : For control in y the actuator term u is added to the left side of
the equation for ẏ in the uncontrolled system (5.1):

ẏ = rx− y− xz + u(x, y, z).

The Pareto solutions from the GP run are shown in Table 5.4. The wide spread
of the cost indices is a sign of conflicting objectives that are hard to satisfy in
conjunction. Interestingly, almost all solutions, u, commonly introduce a negative
growth rate into ẏ. This effectively drives y to zero and suppresses the growth
terms, sy and xy, in the equations for ẋ and ż respectively, in turn, driving x
and z to zero as well. As would be expected, minimal expressions, of length 1

or 2, cannot compete in terms of the RMSE. For example, the simple solution,
u(x, y, z) = −ky (fourth row), is almost as good as the lengthier one, u(x, y, z) =
− exp(x) + ky (first row), and even better in RMSEy.

Table 5.4 shows the results from the GP run. One solution immediately stands
out: u = k · x+ z, with k = −27.84 (second row). It is exactly what one might expect
as a control term for the chaotic Lorenz system with control in y. This control law
effectively reduces the Rayleigh number r to a value close to zero (k ≈ r), pushing
the Lorenz system past the first pitchfork bifurcation, at r = 1, back into the stable-
origin regime. If r < 1 then there is only one equilibrium point, which is at the
origin. This point corresponds to no convection. All orbits converge to the origin,
which is a global attractor, when r < 1.

The phase portrait of the solution from the first and second row of Table 5.4
are illustrated in Fig. 5.3. After a short excursion in negative y direction (t ≈ 5),
the green trajectory quickly converges to zero. The red trajectory seems to take
a shorter path in phase space, but, it is actually slower to converge to the origin.
This is verified by a plot of the trajectories for the separate dimensions x, y and z
over time Fig. 5.4.
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Table 5.4: Control of the Lorenz system in y: Pareto-front solutions.

RMSEx RMSEy RMSEz length expression constants

0.178884 0.087476 0.105256 7 − exp(x) + k · y k = −135.43
0.241226 0.069896 0.213063 5 k · x + z k = −27.84
0.246315 0.014142 0.222345 6 −z + k · y k = −75590.65
0.246316 0.014142 0.222347 4 −k · y k = 75608.50
0.246367 0.028851 0.220426 10 −x · (k + y) · exp(exp(y)) k = 9.62
0.246729 0.118439 0.211212 6 −x · (k + y) k = 29.21
0.246850 0.031747 0.220726 9 −x · (k + y) · exp(y) k = 26.12
4.476902 4.468534 7.488516 3 − exp(y)
7.783655 8.820086 24.122441 2 −x
7.931978 9.066296 25.047630 1 k k = 1.0
8.319191 8.371462 25.932887 2 −y
8.994685 9.042226 30.300641 1 z
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Figure 5.3: Phase portrait of the forced Lorenz system with control exerted in ẏ. (Green
and red: The system trajectories when controlled by two particular Pareto-front
solutions. Blue: the uncontrolled chaotic system.)
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Figure 5.4: Detailed view of the single trajectories in x, y, and z dimension. (blue: un-
controlled; green: u(x, y, z) = − exp(x) + k · y, k = −135.43; red: u(x, y, z) =
k · x + z, k = −27.84.)

control in z : For control in z the actuator term u is added to the left side of
the equation for ż in the uncontrolled system (5.1)

ż = xy− bz + u(x, y, z)

Selected Pareto-front individuals from the GP run are displayed in Table 5.5.
As mentioned at the beginning of this section, effective control is hindered by
the indirect influence of z on the other state variables, hence, it is not surprising
that the control laws here are more involved than in the previous case. Also, they
generally do not perform well in the control of z, which is expressed by the rela-
tively high values in RMSEz. This is confirmed by the phase portrait of the solution
u(x, y, z) = −(k · (−y)+ x · z+ y+ z) shown in figure Fig. 5.5: While going straight
to the origin in the xy-plane there are strong oscillations of the trajectory along the
z-axis.

The dynamics caused by the actuation, e. g. for the best control law found, can
be explained qualitatively: there is a strong damping in all variables but y. This
reflects the tendency to suppress z-oscillations and, at the same time, to add damp-
ing in y through the xz term: if y grows, the z contribution to damping on the
right hand side of the Lorenz equations (5.1) grows and, in turn, damps y. This is,
however, only possible to some extent, hence, the oscillations observed in figure
Fig. 5.5.

We conclude the demonstration with a short summary: Using Glyph we can find
complex control laws, even for unknown systems. This cannot be easily achieved
with other frameworks. The control laws found can be studied analytically in
contrast to several other methods which have black-box character. The usage is
straightforward, as we have described above. The above example can be found
online as an example.

Other symbolic regression libraries

Due to its popularity, symbolic regression is implemented by most genetic pro-
gramming libraries. A semi-curated list can be found at http://geneticprogramming.
com/software/. In contrast to other implementations, Glyph implements higher
concepts, such as symbolic constant optimization, and also offers parallel execu-

http://geneticprogramming.com/software/
http://geneticprogramming.com/software/
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Table 5.5: Control of the Lorenz system in z: selected Pareto-front solutions.

RMSEx RMSEy RMSEz length expression constants

0.289289 0.139652 26.994070 13 −(k · (−y) + x · z + y + z) k = 793.129676
0.327926 0.267043 27.070289 8 exp(−k + y · sin(y)) k = −4.254574
0.431993 0.508829 32.116326 7 (k + x) · (y + z) k = 2.638069
0.471535 0.525010 26.986321 5 k + x · z k = 67.137183
0.637056 0.605686 26.895493 7 exp(k + y · sin(y)) k = 3.964478
0.677204 0.703577 27.019308 4 y + exp(k) k = 4.276256
0.930668 0.952734 26.895126 5 x + exp(exp(k)) k = 1.448198
1.764030 1.860288 26.766383 6 (k + x) · exp(y) k = 21.783557
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Figure 5.5: Control of the Lorenz system in ż.

tion for complex examples (control simulation, system identification). Glyph is
well tested, cf. Table 5.6 and currently applied in two experiments and several
numerical problems. For control, there exists a dedicated Matlab toolbox (with
Python interface), openMLC [S15], which contains much of the material treated in
[S6].
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CI/tests doc open api caching CP MOGP SCO MO

openMLC 3 7 7 3 3 7 7 7

Glyph 3 3 3 3 3 3 3 3

Table 5.6: Comparison of Glyph and openMLC features. MOGP refers to multi objective opti-
mization. CP refers to checkpointing. MO means multiple outputs. SCO means
symbolic constant optimization.

5.3 reuse potential

The potential to use Glyph is twofold: one one hand applications can be easily
written and the elegant core functionality can be extended; on the other hand,
researchers can use the code as core for symbolic regression and extend its func-
tionality in a very generic way. With respect to applications, currently two main
directions are targeted: modeling using genetic programming- based symbolic re-
gression and the control of complex system, where a control law can be found
generically, using genetic programming. The detailed examples and tutorial allow
usage from beginner to experienced level, i.e. undergraduate research projects to
faculty research. The design of Glyph is such that generic interfaces are provided
allowing for very flexible extension.
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6C O N C L U S I O N S

In this thesis, we have demonstrated the use of symbolic regression in the natu-
ral sciences with application to identification, prediction and control of dynamical
system. Traditionally, dynamical systems modeling relies on analytic or numeric
methods and is conducted by domain experts. Machine Learning (ML), and in par-
ticular symbolic regression, offers a new paradigm: Data-driven modeling. ML often
provides only black box models, i. e. models which lack insight and interpretability
for domain experts. Similarly, the origins of data are also obscure for most ML

experts.
The No Free Lunch Theorems (NFL) [87, 88] state that all methods1 of find-

ing solutions for optimization problems perform equally well if averaged over all
possible optimization problems. No single solution-finding method performs best
across all types of problems; in other words, each method can outperform other
methods in a specific domain. While the domain of some methods, e. g. deep learn-
ing, is huge, generating a lot of commercial profit and media attention, symbolic
regression certainly has its place close to scientific applications.

In contrast to most ML-methods, symbolic regression provides white-box models
which allow for deep insight. While interpretability increases scientists’ trust in
the optimization method itself, it also allows them to stick to their conventional
toolchain. In the case of dynamical systems, this includes for example stability
analysis, model integration, time-scale separation or series expansion. Most im-
portantly, scientists may also be able to use their intuition, e. g. associating certain
expressions with patterns in phase-space.

We introduce two kinds of symbolic regression: sparse regression-based and
Genetic Programming (GP)-based symbolic regression. They are applied to system
identification, prediction and control problems.

The focus of this thesis is the further advancement of a methodological foun-
dation of symbolic regression and its application to dynamical systems. For sys-
tem identification tasks, both kinds of symbolic regression methods have been
applied successfully. However, if one has a good understanding of the function
space, sparse regression offers a more robust estimator with faster convergence.
Additionally we have introduced the concept of fast model recovery, relying on
first principles of dynamical systems. With increasingly abstract objectives or com-
plex systems, GP-based symbolic regression starts to shine. Gradients on abstract
complex objectives are often intractable, thus evolutionary optimization will be
more efficient. Furthermore, GP inherently supports multiple outputs as well as
multiple objectives which are both of great value.

We applied symbolic regression to a range of current problems in dynamical
systems and data science ranging from predicting the power production of green
energy power plants (wind or solar) and front propagation in coupled oscillators,

1 Note, that this includes random search as well.
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to turbulence control around an airfoil or crossflow turbines, and synchronization
control in coupled oscillators.

We have motivated the sparsity or parsimony principle in symbolic regression.
In sparse regression, it is achieved using regularization and thresholding. The
principle is also eponymous for sparse regression. In GP-based symbolic regres-
sion we use multi-objective optimization by introducing a complexity measure as
a second objective. The accuracy-simplicity trade-off typically gives rise to a set of
Pareto-optimal models which requires further inspection to select a single model.
Multi-objectivity has been proven to be a vital component in GP combating bloat
and overfitting [89]. It is of further use beyond attaining sparsity if the objective
is complex and the trade-off between different aspects is unclear. For time series
prediction, there is often a non-linear cost function associated to the residual er-
rors between forecast and actual event. For example, predicting the power output
of green energy power plants, this could mean earning less in the case of under-
prediction, as the under-predicted amount will have a lower price per kWh. How-
ever, if one promises too much, conventional energy resources have to be bought
which leads to diminishing returns. If the exact values and prices are known, such
a scenario can be expressed in a single objective. However, since these parameters
depend on time it might be useful to minimize over- and under-prediction inde-
pendently without formulating the exact trade-off. The same principle holds for
turbulence control minimizing drag while maximizing lift.

A significant part of the contributions of this thesis consists of accompanying
scientific open source software, cf. Appendix B. For sparse regression, several pre-
viously scattered methods have been made available in [90] adhering to the estab-
lished scikit-learn interface [91]. There are many implementations of GP avail-
able already2. Most of them are conceived as frameworks setting a huge entry
barrier for users. With Glyph [92], we try to lower this entry barrier. Glyph was de-
veloped with MLC in mind and is used at the Collaborative Research Center (CRC)
880 in Braunschweig [93].

outlook

Motif discovery will be an interesting topic in the future. In symbolic regression,
a motif is a recurring parametrized pattern, e. g. the Michaelis–Menten kinetics
reaction rate occurring in the quasi steady state approximation of the chemical
Master equation [94]. In different communities, different approaches have been
developed so far: on the one hand, specialized models [95] are used in natural
sciences while on the other hand, clever structure representations [15] are used in
the ML community, cf. Section A.1.

Typically, within each domain there is a catalog of these motifs as well as a
graphical representation to visually encode structure [96, 97]. Graphical represen-
tation allows for a more compact encoding while maintaining the symbolic char-
acter which ultimately increases the inference ability of domain experts, as well
as their ability to communicate the results to other humans. In systems biology
for example, changing the type of a neuron or coupling between them is a single
symbolic change which has a huge impact on the underlying dynamics. GP-based

2 See also http://geneticprogramming.com/software/.

http://geneticprogramming.com/software/
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symbolic regression is a perfect candidate if primitives encode motifs instead of
mathematical functions.

In traditional mathematics, if a problem occurs often enough, we usually intro-
duce a special function and associate it with the solution of that problem, e. g. the
exponential function as a solution of ẋ = x. Often, only approximate numerical
evaluation is possible and the exact implementation on computing devices is hid-
den from the user. Similarly, we can understand motifs as symbolized solutions
to often occuring problems, e. g. the propagator of the Lorenz system or a global
mean field coupling term for coupled oscillators.

Using meta-data and side-information may be critical in ML tasks [98]. Meta-
data may aid in the choice of building blocks, i. e. the primitive set in GP or the
candidate library in sparse regression. The correct choice is critical for the success
and often a big criticism of the method.

We could use symbolic regression to find motifs, but also any other ML-method.
On a higher level of calculus, implementation details only affect the precision
of a solution, not its accuracy. Motifs would inform knowledge transfer between
progressively more difficult optimization problems and symbolic regression can be
the framework supporting motif calculus, making GP-based symbolic regression a
language for optimization itself.

The design of model falsifying experiments is another key component of human
expert modeling and its automation will be tremendously beneficial for symbolic
regression. A good model not only explains current experiments, but also predicts
the future accurately. Modeling complex phenomena is always a learning process,
starting from understanding simple edge cases to an eventual deep understand-
ing of the problem. Currently, this learning process is guided by domain experts
with their ability to formulate theories and design experiments to verify those the-
ories. Teaching machines how to learn will require to teach them how to verify
and falsify models as this is an essential skill to estimate the boundaries of knowl-
edge and the trust them. Co-evolution [99] in GP-based symbolic regression points
towards that vein of research. In co-evolution, the fitness function is evolved along-
side the candidate solution ensuring maximal discriminability. Stage-wise model
refinement is at the core of science. Expanding on the idea of co-evolution, auto-
mated experiment design should lead to progressively more challenging problems.
The knowledge transfer between the stages emulates learning, eventually enabling
a knowledge exchange between domains.

A higher incorporation in the modeling process of the aforementioned strength
of symbolic regression, namely proving scientific model insight via mathematical
expressions, will be of big benefit. Current efforts include automatic differentiation
[100, 101] which has a big impact on constant optimization reducing the number of
necessary function calls significantly, a problem the MLC community is struggling
with, cf. Appendix C. Incorporating automatic differentiation in symbolic regres-
sion based control could increase practicality of this approach. Another viewpoint,
partially discussed in Chapter 2, is automated stability analysis and Lyapunov ex-
ponent calculation. The former can be used for further refinement of the model
selection process in control tasks, e. g. formulating a stability threshold as an ob-
jective or constraint. Symbolic models may be used by tools like Auto [102] which
reduce the integration problem to an algebraic one, which is again useful for con-
stant optimization. Lyapunov exponents can independently be calculated from
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data and thus their comparison with the model estimation offers great insight and
aids model selection as well.

The work on hybrid methods is promising, e. g. combining sparse regression
and GP [51, 52]. First attempts have also been made to optimize the kernel func-
tion of a Gaussian process [103]. A next logical step seems to be the symbolic
regression aided discovery of Koopman observables, i. e. a set of measurement
functions which evolve via the linear Koopman operator forward in time.

Traditional ML methods allow for easy combination via pipelines [104], e. g. for
feature engineering, hyper-parameter estimation or ensemble estimators. While
this is essential for the success of ML, pipelining is conducted under the black-box
assumption. Currently, using symbolic regression like a traditional ML method
means giving up on interpretability and other perks of the white-box symbolic
models. More research has to be conducted to bring these two ideas together.
One approach could be the automated optimization of embedded coordinates,
a technique which has been successfully used before in a non automated form in
symbolic regression [41, 105].

Looking at the current shooting star of ML – deep learning – there is huge po-
tential for cross-fertilization. Recurrent Neural Networks look promising for mod-
eling time dependencies in time series prediction and system identification. Recur-
sion allows for compact encoding of algorithms and may be useful in GP-based
symbolic regression allowing for models with time delays. Encoding time delays
as primitives in GP could be valuable in describing automated embedding in time
series prediction models. Time delays also often occur in coupled systems [106],
and modeling them can have a huge impact on the stability analysis regarding the
control of those systems [107].

The implementation of constraints is still an open question and of great interest
in symbolic regression, especially GP-based symbolic regression. This is relevant
in real-world applications where each function evaluation has an associated cost.
In an overly constrained search-space, this is very inefficient and the evolutionary
optimization is close to random search. Local search techniques may help to find
constraint conforming corrections [36]. Currently, candidate solutions are rejected
based on a heuristic, e. g. by comparison to current best results, mathematical prop-
erties or output-statistics based on typical inputs. Typically, a rejected candidate
solution or a rejected modification of a candidate solution is simply replaced by a
new one.

Finally, the successful application of symbolic regression to real world problems
continues to be an exciting challenge: obvious applications include time series
prediction for commercial profits, e. g. in the financial sector. This seems to be a
popular exit strategy for former academics [108, 109]. For commercial applications,
incorporating meta- and side-information, e. g. large-scale weather pattern for fore-
casting the power production of wind turbines, will be extremely valuable. MLC

had a great initial success and needs to be expanded to more realistic scenarios,
including stability analysis of control laws. The idea of synchronization control
which has been investigated in Chapter 4 can be expanded to deep brain stimu-
lation for tremor or epilepsy treatment [110]. As a relatively young optimization
method, there is engineering work left to do to increase real-world practicability,
i. e. increasing robustness by reducing the number of hyper-parameters as well as
designing more user friendly interfaces.
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AG P R E P R E S E N TAT I O N

Symbolic regression is a combined problem of [53]

• structure discovery,

• variable/feature selection and

• constant/parameter optimization.

While structure discovery and feature selection by the genetic algorithm using
a common data structure, cf. Section A.1, determining optimal parameter values
remains a challenge [111] and has to be dealt with separately. Common approaches
for dealing with parameters are listed in Section A.2.

a.1 structure representations

This section gives an overview about different structure presentations of expres-
sions in the context of genetic programming based symbolic regression. GP has a
lot of heuristics and comes in many flavors. Besides the listed ones, there is also
Linear Genetic Programming [112], Grammatical Evolution [113] and many more.
The genotype of an expression is the expression encoded in its representation. The
phenotype of an expression is the expression itself up to mathematical equivalence.

a.1.1 Tree Based Representation

For a detailed description see also Section 3.2.1 and Section 4.2.2.
The simplest way to represent a program is an expression tree, cf. Fig. A.1. It is
used in the early implementations of genetic programming based symbolic regres-
sion [34]. The nodes of the tree represent program primitives. The edges represent
how the primitives are connected. For symbolic regression, leaf nodes represent
variables or constants and all other nodes represent functions. Typically, the geno-
type translates directly into the phenotype, i. e. there are no non-coding genes and
the encoding is not compressed. Trees are generated by growing them from top to
bottom, either to a fixed length or with a probabilistic stopping criteria. Both main
methods of tree manipulation – mutation and crossover – are based on generating
or exchanging subtrees. This makes the tree based encoding susceptible to bloat.
Variable program size allows for simplification. Similarly to mutation, a subtree
is replaced by a mathematically equivalent, but smaller tree. Trees are the most
intuitive representation, however, they also lack in efficiency (no compression) or
are unsuitable for convergence speed improving heuristics.

Multiple Outputs

In the naive approach to multiple output functions are represented by a list of
single output/ one dimensional functions. The implementation of the genetic op-
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+

*

b x

*

b x

Figure A.1: The expression bx + bx encoded as a tree. The encoding needs 7 nodes and
has 4 unique symbols. The depth of the tree is 3.

erators is straight forward and wraps around the corresponding single output
genetic operators:

• Creation: Vectorized version of the single dimension tree creation method.

• Mutation: Pick one (or many) of the n subtrees and apply the single output
mutation operator.

• Crossover: Pick two out of the 2n subtrees and apply the single output
crossover operator. Return a new offspring-based multi-output tree.

The information shared between the different dimensions is minimal. Common
subexpressions, e. g. coupling terms, have to be represented/discovered multi-
ple times. Alternatively, one can use a single tree with multiple entry points, cf.

y0

+

b *

cos

x

x

y1

*

cos

x

x

y2

x

Figure A.2: Tree list representation of ~y = ~f (x) with y0 = x cos(x) + b, y1 = x cos(x)x and
y2 = x. A total of 14 nodes are used to represent the function.

Fig. A.2 and Fig. A.3. However, this constraints possible variations of the tree
since entrypoints have to remain valid.

a.1.2 Graph-based Representation

An expression often has repeating parts, e. g. the argument when approximating a
function by a Taylor series or coupling terms when identifying a dynamical system.
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y0 y2y1

+

b *

cos

x

x

Figure A.3: Single tree multiple entrypoints representation of ~y = ~f (x) with y0 =
x cos(x) + b, y1 = x cos(x)x and y2 = x. A total of 9 nodes are used to repre-
sent the function.

With tree based genetic programming the repeating parts have to be discovered
and stored multiple times within the same tree. Although is has been shown that
this does not necessarily slow down the optimization [114]. Graphs are the natural
extension to trees, allowing child nodes to be shared between (grand-) parents. E. g.
encoding the expression bx + bx in a graph, cf. Fig. A.4, requires three nodes less
than using a tree, cf. Fig. A.1.

*

+

b x

Figure A.4: The expression bx + bx encoded as a graph. The encoding needs 4 nodes and
has 4 unique symbols.

Automatic Defined Functions and Modularity

Automatic Defined Functions (ADF) [115] are an extension to tree-based GP. A prim-
itive node of the main tree is allowed be represented by another tree. If there are
n unique ADFs in the primitive set, the genotype of the individual is represented
by n + 1 trees. ADFs describe a subset of all possible graphs, cf. Fig. A.5. The main
idea of ADFs is that the program is organized in modules enabling parametrized
reuse and hierarchical invocation [116]. Similarly, pointer primitives [117] allow
for program modularization.
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+

ADF1 *

b x

ADF1

*

b x

Figure A.5: The expression bx + bx encoded as tree with one ADF. The encoding needs 9

nodes and has 5 unique symbols.

Cartesian Genetic Programming

Typically, Cartesian Genetic Programming (CGP) [117, 118, 119] is used instead of
working indirectly encoding graphs. In CGP, programs are represented by a two
dimensional grid of program primitives. The genotype is a list of integers repre-
senting the primitives and their connections [120]. The genes are either links to
data or links to function lookup table. Connections between genes are constrained;
genes may only connect to a gene between one and nback columns earlier in the
program. Output genes may connect to any other gene. This ensures that the grid
represents a directly acyclic graph with additional non-coding genes, i.e. genes
which are not connected to any output gene and therefore do not contribute to the
phenotype of the program. Fig. A.6 shows the expression bx+ bx encoded in a CGP

program with one row and five columns. The first number of the gene links to the
function lookup table, the following numbers connect to other genes. While out-
put genes only connect to other genes, input genes can only be connected to. The
non-coding genes in the program are genes number three, four and five. Programs

x 0
b 1

Inputs

010
2

111
3

010
4

013
5

122
6

6
O1 * 0

+ 1

Functions

Figure A.6: The expression bx + bx encoded as a Cartesian register. The program size is
fixed to 2 input genes, 1 row, 5 columns and 1 output gene. The representation
has non-coding genes (3, 4, 5).

are changed with point mutations. A point mutation changes either changes the
function or connection link of a gene. It is recommenced not to use crossover [118].
Due to the fixed maximum program size and the way connections are allowed, CGP

programs are inherently sparse [119] and do not suffer the same problems with
bloat as its tree based counterpart. Representing another dimension is as simple
as adding another output gene without further constraints on possible program
manipulations. Therefore, CGP lends itself for system identification [114]. Similarly
to ADF, CGP has evolvable and reusable submodules [121, 122].
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a.1.3 Stack-based Representation

In stack-based GP, programs are expressed in a stack based programming language
[123, 124, 125]. The stack genotype uses first-in-last-out push and pull actions. A
program in postfix notation is parsed as follows: iteratively each primitive of the
program is considered. If it has zero arity (variable, parameter) it is pushed to
the stack. If it is a function and the stack is greater or equal than the functions
arity, a new zero arity expression constructed by pulling arguments for the func-
tion from the stack. The constructed expression is pushed to the stack. If however,
the stack cannot provide enough arguments for the function, it is simply ignored.
Finally, after each primitive of the program has been parsed, the resulting expres-
sion is the first pulled from the stack (there may be more than one). An example
is given in Fig. A.7. Due to the simplicity of the data structure and the fact that
invalid combinations of primitives are non-coding , stack-based GP is much less
constrained compared to tree-based GP and allows for automatic simplification
[126], ADFs [116] module/motif discovery [127] or epigenetic local search [128].

program: [x, -, x, b, +, b, x, +, *]

instruction stack
(x) push x [x]
(-) ignore [x]
(x) push x [x, x]
(b) push b [x, x, b]

(+) pull b, pull x
push b+x [x, b+x]

(b) push b [x, b+x, b]
(x) push x [x, b+x, b, x]

(+) pull b, pull x
push b+x [x, b+x, b+x]

(*) pull b+x, pull b+x
push (b+x)*(b+x) [x, (b+x)*(b+x)]

Figure A.7: The expression bx + bx encoded as postfix stack. The encoding needs 9 nodes
and has 5 unique symbols.

a.2 constants in genetic programming

a.2.1 Ephemeral Random Constants

Ephemeral Random Constantss (ERCs) [34] are a special leaf node holding a ran-
dom numeric value drawn from a distribution, e. g. U[−1,1]. If a new candidate
solution is created, either by creating a new one or by breeding old ones, all ERC

values are drawn independently.
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Since ERCs do not require any changes to the genetic algorithm or special oper-
ator to alter their values, they are relatively easy to implement and do not change
the computational complexity of the optimization algorithm. However, in this case,
constant optimization – like structure discovery – is fitness guided and there is no
mechanism for a more systematic search.

a.2.2 Structure-based Constants

Structure-based constants [129] introduce a new primitive function which maps
the structural properties of its child tree to real numbers, e. g. SC(T1, T2) = ‖T1‖

‖T2‖ ,
where ‖T1/2‖ is the number of nodes in the left or right subtree correspondingly.
Other properties to be considered are the depth of the subtree or the maximum
artiy of any node in the subtree. Usually, structure-based constants are scaled to
an interval [cmin, cmax].

Structure-based constants are optimized – like ERCs – by the genetic algorithm
and therefore they do not change the computational complexity. They only require
a few extra parameters and are typically even easier to implement compared to
ERCs as most genetic programming frameworks allow for customization of the
primitives.

a.2.3 Symbolic Constants

Symbolic constants introduce a more systematic search strategy. This is achievable
by either introducing a special mutation operator or by formulating a layered
optimization problem. Using a mutation operator, the value of random constants
is changed by adding a random increment instead of replacing it altogether [130],
i. e. c 7→ c + ξ and ξ ∼ N (0, 1), where c is the value of the constant and ξ is a
normal distributed random variable.

In a layered optimization problem for each discovered structure a the subprob-
lem c∗ = argminc L has to be solved, where c is the vector of constants and L
is the objective function, e. g. the normalized root mean squared error. See also
Section 3.3 for more details.

Optionally, one can use evolutionary optimization, e. g. genetic algorithms [131],
or gradient based optimization [53, 41, 54]. Symbolic regression has the advantage
of symbolic differentiability, which will speed up gradient based method.

However, formulating a layered optimization problem increases the computa-
tional complexity multiplicatively and not for every structure it is worthwhile to
determine the optimal constant values as they might still be comparatively bad.
Therefore, layered optimization often is accompanied by additional heuristics, cf.
Appendix C, lowering the computational complexity. This can include running
only a small number of iterations or only optimizing the constants of candidate
solutions with promising structures.
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b.1 glyph

Glyph is a python 3 library based on DEAP[132] providing abstraction layers for
symbolic regression problems.

It comes with batteries included:

• predefined primitive sets,

• n-dimensional expression tree class,

• symbolic and structural constants,

• interfacing constant optimization to scipy.optimize,

• easy integration with joblib or dask.distributed,

• symbolic constraints,

• boilerplate code for logging, check-pointing, break conditions and command
line applications,

• rich set of algorithms.

Glyph also includes a plug and play command line application glyph-remote

which lets non-domain experts apply symbolic regression to their optimization
tasks.

List of contributors

Core contributors (prior to open source):

• Markus Quade

• Julien Gout

Open source contributors can be found at https://github.com/Ambrosys/glyph/
graphs/contributors.

Archive: Zenodo

name : Ambrosys/glyph
persistent identifier : http://doi.org/10.5281/zenodo.801819

licence : LGPL
publisher : Markus Quade
version published : 0.3.5
date published : 22.01.18
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Code repository: Github

name : glyph
persistent identifier : https://github.com/Ambrosys/glyph

licence : LGPL
date published : 08.12.16

b.2 cartesian

Cartesian is a small library implementing cartesian genetic programming [118].
The library is implemented in Python and adheres to the well known scikit-learn

interface[91].
The basic components are provided:

• data structure

• 1 + λ algorithm

• symbolic, ephemeral and structured constants

Cartesian can provide insight into which constant type you should use for your
problem as is naturally distinguishes between the total number of function evalu-
ations and iteration of the genetic algorithm.

Archive: Zenodo

name : Ohjeah/cartesian
persistent identifier : https://doi.org/10.5281/zenodo.1202180

licence : LGPL
publisher : Markus Quade
version published : 0.1.4
date published : 19.03.18

Code repository: Github

name : cartesian
persistent identifier : https://github.com/Ohjeah/cartesian

licence : LGPL
date published : 21.07.17

b.2.1 Example Program

1 from sklearn.datasets import make_regression
2 from sklearn.utils.validation import check_random_state
3 from sklearn.model_selection import train_test_split
4 from cartesian import Symbolic
5

6 rng = check_random_state(1337)
7

https://github.com/Ambrosys/glyph
https://doi.org/10.5281/zenodo.1202180
https://github.com/Ohjeah/cartesian
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8 x, y, coef = make_regression(
9 n_features=2, n_informative=1, n_targets=1, random_state=rng, coef=True)

10 x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=rng)
11

12 est = Symbolic(
13 n_const=2,
14 random_state=rng,
15 n_columns=5,
16 n_rows=2,
17 max_nfev=100000,
18 n_jobs=-1,
19 f_tol=1e-4)
20 est.fit(x_train, y_train)
21 print(est.res)
22 print(est.score(x_test, y_test))

b.3 sparsereg

sparsereg is a collection of modern sparse (regularized) regression algorithms. The
library is implemented in Python and adheres to the well known scikit-learn

interface[91]. It implements (variations) of the following algorithms:

• Fast Function Extraction FFX [23],

• Evolutionary Feature Synthesis EFS [51],

• Bootstrapped Adaptive Threshold Selection BOATS [30],

• Sparse Identification of Nonlinear Dynamics SINDy [29], as well as its vari-
ants/extensions Abrupt-SINDy [133] and Group Sparse Lasso based SINDy
[134, 135].

Archive: Zenodo

name : Ohjeah/sparsereg
persistent identifier : https://doi.org/10.5281/zenodo.1182579

licence : LGPL
publisher : Markus Quade
version published : 0.8.4
date published : 21.02.18

Code repository: Github

name : sparsereg
persistent identifier : https://github.com/Ohjeah/sparsereg

licence : LGPL
date published : 30.01.17

https://doi.org/10.5281/zenodo.1182579
https://github.com/Ohjeah/sparsereg
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b.3.1 Example Program

The example highlights system identification of a simple harmonic oscillator using
SINDy.

1 import warnings
2

3 import numpy as np
4 from scipy.integrate import odeint
5 from sklearn.model_selection import KFold, GridSearchCV
6 from sklearn.utils import check_random_state
7

8 from sparsereg.model import SINDy
9

10

11 def rhs_harmonic_oscillator(y, t):
12 dy0 = y[1]
13 dy1 = -0.3 * y[0]
14 return [dy0, dy1]
15

16

17 x0 = [0, 1]
18 t = np.linspace(0, 10, 1000)
19 x = odeint(rhs_harmonic_oscillator, x0, t)
20

21 x_train, x_test = x[:750], x[750:]
22

23 kw = dict(fit_intercept=True, normalize=False)
24 model = SINDy(dt=t[1] - t[0], degree=2, alpha=0.3, kw=kw)
25

26 rng = check_random_state(42)
27 cv = KFold(n_splits=5, random_state=rng, shuffle=False)
28 params = {"alpha": [0.1, 0.2, 0.3, 0.4, 0.5], "threshold": [0.1, 0.3, 0.5]}
29 grid = GridSearchCV(model, params, cv=cv)
30

31 with warnings.catch_warnings(): # suppress matrix ill-conditioned warning
32 warnings.filterwarnings("ignore")
33 grid.fit(x_train)
34 selected_model = grid.best_estimator_

35

36 print("Score on test data ", selected_model.score(x_test))
37 print(
38 "Selected hyperparameter (alpha, threshold): ",
39 selected_model.alpha,
40 selected_model.threshold,
41 )
42 for i, eq in enumerate(selected_model.equations()):
43 print("dx_{} / dt = ".format(i), eq)
44 print(
45 "Complexity of the model (sum of coefficients and \
46 intercetps bigger than the threshold): ",
47 selected_model.complexity,
48 )
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7 Universität Potsdam, Institut für Physik und Astronomie, Karl-Liebknecht-
Straße 24/25, 14476 Potsdam, Germany

8 Department of Mechanical Engineering, University of Washington, Box 352600,
NE Stevens Way, Seattle, Washington 98195, USA

This chapter is based on an internal report. We implement and demonstrate the use of
the genetic symbolic regression software glyph, cf. Chapter 5, in a real world experiment
setting. Additionally, we optimize the control of a cross-flow turbine using a model-free
approach.

Due to their complex hydrodynamics, accurate low-order analytical models for
the instantaneous or average power production of cross-flow turbines do not ex-
ist. This is a mainly a result the cyclically varying flow conditions experienced by
the blades, which includes full separation, interaction with the wake of upstream
blades, and operation in a curvilinear flow field. Control strategies employing
machine-learning have previously been shown result in a 58% increase in power
output in scale-model cross-flow turbine [136]. By varying the rotation rate of
the turbine as a function of azimuthal blade position, the fluid-structure interac-
tion was optimized to increase increase beneficial forcing. Additionally, extrema of
torque and angular velocity were aligned, resulting in larger power output during
favorable portions of the blade rotation and reducing losses during unfavorable
portions.

c.1 prior work

The conversion efficiency, also known as power coefficient is defined as

cP =
τω

1
2 ρU3

∞ A
, (C.1)

where τ is the torque passed onto the turbine by the fluid, ω is the rotation fre-
quency, ρ is the fluid density, U∞ the free stream velocity, and A is the projected
area normal to the free stream direction. The rotor rotates according to

Iω̇ = τfluid + τexternal, (C.2)

where τfluid is the torque impaired by the fluid; τexternal subsumes losses and con-
trol. The torque produced by the rotor and used to calculate the conversion effi-
ciency in Equation C.1 is

τ := τ′fluid − Iω̇. (C.3)
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Four types of control have been applied: constant torque τ, constant rotation fre-
quency ω, as well as two parametrized rotation frequency profiles:

ω(θ) = A0 + A1 sin(Nθ + φ1) (C.4)

and

ω(θ) = A0 + A1 sin(Nθ + φ1) + A2 sin(2Nθ + φ2) + A3 sin(3Nθ + φ4), (C.5)

where N is the number of turbine blades. The Nelder-Mead downhill simplex
optimizer was used to determine the constants A and φ, and N = 2 was employed.
A comprehensive description of the method can be found in [136].
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Figure C.1: Taken from [136] with permission. Turbine set-up and control system.

c.2 setup for glyph

As a proof-of-concept of Glyph software for learning control laws for cross-flow
turbines, we attempt to recreate or exceed the performance of the above prior
study, but no prior assumption of the control law form. To implement this, Glyph
is restricted to single input (the turbine azimuthal position, θ), single output (the
turbine angular velocity, ω) functions that are periodic over a half rotation rate.
Like the above functions, the periodicity ensures each of the two blades undergoes
identical kinematics.

Table C.1 lists all parameters regarding the use of Glyph for the crossflow turbine
experiment.

With the parameters, we expect to be able to learn (at a minimum) the optimal
sinusoidal waveform found in the previous work, but in the form

ω(θ) = c0 + c1 sin(2θ) + c2 cos(2θ) (C.6)
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Table C.1: GP Parameters for the crossflow turbine experiment

population size 10
max. generations 5
MOO algorithm NSGA-II

tree generation halfandhalf
min. height 1

max. height 4

selection selTournament
tournament size 2

breeding varOr

recombination cxOnePoint
crossover probability 0.5
crossover max. height 20

mutation mutUniform
mutation probability 0.2
mutation max. height 20

Variables sin(2θ), cos(2θ)

Operators {+,−}
constant type symbolic
constant number 3
constant optimization Nelder-Mead Heuristic

where the constants are related to Equation C.4 by

c0 = A0, c1 = A1 cos(φ1), and c2 = A2 sin(φ1). (C.7)

Besides raw function evaluations, the largest factor in determining experiment
run-time is the need to compile the turbine control algorithm onto a real-time,
computer-in-the-loop target (Simulink Realtime Desktop). Two steps were used
to reduce compile time. First, all control laws for a single generation, with con-
stants left in symbolic form, were ported to MATLAB and written to the control
software. Second, the control software was programmed to allow changes to the
equation constant values during run-time. This allowed for a single compile of the
turbine control software per generation.

For each control law, the constants were optimized using the Nelder-Mead
downhill simplex algorithm with the RS + S9 improvements for stochastic objec-
tive functions [137]. The constant optimization procedure was modified to halt op-
timization after Nc function evaluations if the control law does not show promise.
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c.2.1 Constant Optimization Heuristic

1. Determine which constants are present in the control law, so only these are
optimized. If no constants are present, evaluate the function.

2. Initialize the simplex. One vertex is chosen at random between -10 and 10.
The other vertices are chosen to create a simplex with all side lengths of 5.
The direction from the initial vertex to the subsequent ones is random.

3. For Nc function evaluations, use the Nelder-Mead algorithm to walk the
simplex towards an optimal solution (see the function evaluation procedure
below).

4. Check whether to continue optimizing or not. Optimization continues if a)
the best solution found so far for this control law is within 80% of the best
solution found for any control law or b) the slope of the optimization curve
forecasts performance better than the optimal after Nt more iterations. This
slope is calculated by taking the best performance of the simplex after Nc

iterations minus the best performance of the initial simplex divided by Nc.

5. If constant optimization is to terminate, return the best performance. Other-
wise, continue optimizing for Nt iterations.

c.2.2 Fitness, Pre-testing and Constraints

Pre-testing, i. e. simulation or heuristic based rejection of control law candidates,
is suggested to up the overall experiment as unnecessary evaluation is avoided
[138]. However, if the search space is too restricted, the measure of valid candidate
solutions might tend to zero and a fitness guided search might not be possible.
Therefore, we assign the fitness as follows:

1. Simulate the motion of the turbine under the control law. The simulation
is performed using the Runge-Kutta 4th order solver to find θ(t) from the
equation for ω(θ).

2. Using the simulation output, determine if the control law is appropriate to
test on the experimental turbine. The criteria for an appropriate control law
are

• Minimum velocity greater than zero (Turbine must not rotate back-
wards)

• Maximum velocity less than 30 rad/s (Maximum turbine speed)

• Mean velocity greater than 0.65 rad/s (The turbine must rotate at least
once in ten seconds)

• Maximum angular acceleration induced torque of less than 10 N-m (The
limit of the torque cell)

If the control law and constant set is not appropriate, a fitness is calculated
based on the extent to which the control exceeds the criteria. The fitness
value returned will always be greater than one. If it is appropriate, proceed
to the next step.
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3. Implement the control law and constant set on the experimental turbine for a
period of 10 seconds while recording data. Calculate the turbine mechanical
efficiency over an integer number of turbine rotations. The negative of this
values is returned as the fitness.

c.3 discussion

In this section we discuss the results from our initial test run. Table C.2 lists and
compares the results of [136] with the results obtained from an initial run with
Glyph. We can make two main observations:

• It is easy to find a feedback control which performs better than a open loop
control.

• Evaluation of only about 50 candidate solutions is too little to achieve similar
performance to a control law based on expert knowledge. Considering the
stochastic nature of evolutionary optimization, we can not make any guaran-
tees about reproducibility of the results found or convergence rate. Benefits
of evolutionary optimization over random search accumulate slowly, cf. the
studies presented in [15, 54].

Control scheme c̄P Gain

Constant τ 0.199

Constant ω 0.203 0%
Equation C.4 0.311 53%
Equation C.5 0.321 59%

Glyph 0.260 31 %

Table C.2: Comparison of different control schemes.

We suggest the following improvements:

• Currently, we treat constraints in two places: Glyph replaces invalid (zero,
constant, infinite) expression with random new ones and the pre-testing code
assigns a bad fitness if specific criteria are not met. Maybe we should do both
in one place and test in a simulation.

• We should use the semi-analytic solution as a starting point.

• Maybe we can find a transformation, which eliminates the need for con-
straints.

• Symbolic constants may be replaced by structural or random constants avoid-
ing constant optimization which may be added as a refinement step later on.
The possibility of constants optimization during a single experiment should
be explored.

• Reinforcement learning variant: Given a current control law, we can try to
make small modifications and test its efficiency. Like in simulated annealing,
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changes are accepted if either the efficiency is higher of with p ≈ exp(−β∆E)
with ∆E the efficiency difference and β a generalized temperature. β could
scale with the confidence in the current control law, e. g. if the control law
performs well (lately) and we also have a lot of data (low variance) confi-
dence in the performance is high. If you cannot find a control law with high
confidence, revert back to the latest most confident one. This should work
better in an actual use case of the turbines. You could chose the hyper pa-
rameters such that the expected overall efficiency is maximized. This would
need to be programmed closely to the hardware (asynchronous compilation
at least).

A further application, which has the potential to be even more transformative for
cross-flow turbine performance, will be to include additional state measurements
as inputs to the control law. We plan to include one or multiple measures of a
turbulent upstream flow. If successful, this will result in control laws that optimize
performance in turbulent flows. The turbulence may be endemic to a deployment
site, but a more likely scenario is interaction with wakes of upstream turbines in an
array. Additional inputs may also be considered, such as turbine thrust and lateral
loads. These may be used to optimize the interaction with coherent structures
generated during dynamic stall events by sensing their presence. Alternatively,
structural loading may be included in the objective function, such that undesirable
loading is avoided.
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