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Prediction of dynamical systems by symbolic regression
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We study the modeling and prediction of dynamical systems based on conventional models derived from
measurements. Such algorithms are highly desirable in situations where the underlying dynamics are hard to
model from physical principles or simplified models need to be found. We focus on symbolic regression methods
as a part of machine learning. These algorithms are capable of learning an analytically tractable model from
data, a highly valuable property. Symbolic regression methods can be considered as generalized regression
methods. We investigate two particular algorithms, the so-called fast function extraction which is a generalized
linear regression algorithm, and genetic programming which is a very general method. Both are able to combine
functions in a certain way such that a good model for the prediction of the temporal evolution of a dynamical
system can be identified. We illustrate the algorithms by finding a prediction for the evolution of a harmonic
oscillator based on measurements, by detecting an arriving front in an excitable system, and as a real-world
application, the prediction of solar power production based on energy production observations at a given site
together with the weather forecast.
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I. INTRODUCTION

The prediction of the behavior of dynamical systems
is of fundamental importance in all scientific disciplines.
Since ancient times, philosophers and scientists have tried to
formulate observational models and infer future states of such
systems. Applications include topics as diverse as weather
forecasting [1], the prediction of the motion of the planets
[2], or the estimation of quantum evolution [3]. The common
ingredient of such systems—at least in the natural sciences—is
the existence of an underlying mathematical model which
can be applied as the predictor. In recent years, the use of
machine learning (ML) methods—synonymously used here
for artificial intelligence—complemented the formulation of
such mathematical models through the application of advanced
data analysis algorithms that allow accurate estimation of
observed dynamics by learning automatically from the given
observations and building models in terms of their own
modeling languages. Artificial neural networks (ANNs) are
one example of such techniques that are popularly applied to
model dynamic phenomena. ANNs are structured as networks
of soft weights organized in layers or so-called neurons or
hidden units. One problem of ANN-type approaches is the
difficult-to-interpret black-box nature of the learned models.
Symbolic-regression-based approaches, such as genetic pro-
gramming (GP), provide alternative ML methods that have
recently been gaining increasing popularity. These methods,
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similar to other ML counterparts, learn models from observed
data and act as good predictors of the future states of dynamical
systems. Their added advantages over other methods include
the interpretable nature of their learned models and a flexible
and weakly typed [4] modeling language that allows them to
be applied to a variety of domains and problems. We illustrate
the hierarchy of models and their relation in Fig. 1.

Undoubtedly, the methods used most often in ML are neural
networks. These algorithms are inspired by the architecture of
the human brain, with several layers of neurons, as used in
deep learning. In the present study, involving deterministic
systems, we want to use a certain branch of ML, namely sym-
bolic regression. This technique joins the classical, equation-
oriented approach with its computer-scientific equivalent. In
this publication we do not present any major improvements
in the algorithms; rather we demonstrate how one can apply
symbolic regression to identify and predict the future state of
dynamical systems.

Symbolic regression algorithms work by exploring a func-
tion space, which is generally bounded by a preselected set
of mathematical operators and operands (variables, constants,
etc.), using a population of randomly generated candidate
solutions. Each candidate solution encoded as a tree essentially
works as a function and is evaluated based on its fitness or in
other words its ability to match the observed output. These
candidate solutions are evolved using a fitness-weighted se-
lection mechanism and different recombination and variation
operators. One common problem in symbolic regression is
the bloating effect which is caused by excessive lengthening
of individual solutions or filling of the population by a large
number of solutions with low fitness.
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FIG. 1. Illustration of the relation of the methods mentioned in
the introduction. We only sketch a part of machine learning, which is
relevant for our work.

Symbolic regression subsumes linear regression, general-
ized linear regression, and generalized additive models into
a larger class of methods. Such methods have been used
in the past with success to infer equations of dynamical
systems directly from data [5–9]. One problem with de-
terministic chaotic systems, known for a long time, is the
sampling of phase space using embedding [10,11]. For a
high-dimensional system, this leads to prohibitively long
sampling times. Typical reconstruction methods use delay
coordinates and the associated differences; this results in
mapping models for the observed systems. Mathematically,
differential coordinates are better suited for modeling but
they are not always accessible from data. Both approaches,
difference and differential embedding, have been discussed
in [12] with numerical methods to obtain suitable differential
variables from data. Modern methods such as diffusion maps
[13,14] or local linear embedding [15], including the analysis
of stochastic systems, circumvent the curse of dimensionality
by working directly on the manifold of the dynamical system.

Symbolic regression has been used in previous works for the
prediction and identification of dynamical systems [16–19];
more recently it has been used for the control of turbulent flow
systems [20,21]. In these past publications it is demonstrated
how to find symbolic equations in a very general form.

In this work we use a multiobjective function evaluation
mechanism to avoid the above mentioned bloating effect by in-
cluding minimizing the solution length as an explicit objective
in the fitness function. Technically, we combine in our study
symbolic regression with a subsequent automatic simplifica-
tion and multiobjective optimization. As a consequence we can
select a complexity and interpret the equations found. We use
open-source Python packages for the analysis. For quick tests,
we conduct symbolic regression using an elastic net method
provided by the fast function extraction package (FFX) [22].
A more general but usually slower method is implemented
as a genetic programming algorithm (GP) based on the
DEAP package [23]. Subsequent simplification is obtained
using the SYMPY package [24]. All mentioned “packages” are
Python software packages; of course, any other programming
framework with similar functionality will do as well.

For a systematic study we examine numerically generated
data from a harmonic oscillator as the simplest system to be
predicted, and a more involved system of coupled FitzHugh-

Nagumo oscillators, which are known to produce complex
behavior and may serve as a very simple model for neurons.
We investigate the capacity of the ML approach to detect an
incoming front of activity, and give exact equations for the
regression. We compare different sampling and spatiotemporal
embedding methods, and discuss the results: it is shown that
a space-time embedding has advantages over time-only and
space-only embedding.

Our final example concerns a real-world application,
the short-term and medium-term forecasting of solar power
production. In principle, this could be achieved trivially by
a high-resolution weather forecast and knowledge of the
transfer of solar energy to solar cells, a very well understood
process [25]. However, such a highly resolved weather forecast
does not exist, because it is prohibitively expensive: even the
largest meteorological computers are still unable to compute
the weather on small spatial scales, let alone with a long
time horizon at high accuracy. As the dynamical systems
community identified a long time ago, this is mainly due to
uncertainties in the initial conditions, as demonstrated by the
celebrated Lorenz equations [26]. Consequently, we follow a
data-based approach and improve upon weather predictions
using local energy production data as a time series. We are
aware that use of the full set of weather data will improve
the reported forecast, but increasing the resolution is not our
interest here, rather the proof of concept of the ML method
and its applicability to real-world problems.

The rest of this paper is organized as follows. In Sec. II we
discuss the methods followed by details of our implementation
in Sec. III. This section is followed by the longer Sec. IV,
where results are presented for the above-mentioned example
systems. We end the paper with a summary and conclusions,
Sec. V.

II. METHODS

In the field of dynamical systems, and in particular nonlin-
ear dynamical systems, reconstruction of the characteristics of
an observed system from data is a fundamental scientific topic.

In this regard, one can distinguish parameter and structure
identification. We first discuss the existing literature on
parameter identification which is easier in that there is an
established mathematical framework to fit coefficients to
known curves representing experimental data, which in turn
result from known dynamics. This can be conducted for
linear or nonlinear functions. For deterministic systems, with
the advent of modern computers, quantities such as fractal
dimensions, Lyapunov exponents, and entropies can also be
computed to make systems comparable in dynamics [27,28].
These analyses further allow the rough characterization of the
type and number of orbits of a dynamical system [29]. On
the other hand, embedding techniques have been developed to
reconstruct the dynamics of a high-dimensional system from
lower-dimensional time series [10,11,30].

These techniques have a number of limitations with
respect to accuracy [31] and the amount of data needed
for making good predictive models. A chaotic system with
positive Lyapunov exponents has a prediction horizon which
depends heavily on accuracy and precision [31] of the data,
since chaos “destroys” information. This can be seen very
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clearly by the shift map example [28]. However a system
on a regular orbit, even marked with complicated equations,
might be predicted accurately. For high-dimensional systems,
one needs a large number of data to overcome the “curse
of dimensionality” [27]. In fact it can be shown that for
each dimension, the number of data needed increases on a
power-law basis [27,32]. Eventually, the direct inference of the
underlying equations of motion from data can be approached
using regression methods, such as Kalman filtering, general
linear models (GLMs), generalized additive models (GAMs),
or even more general schemes; see [33] and references therein.
Apart from the equations themselves, partial derivatives often
have to be estimated [12], which is an additional problem for
low-precision data.

For structure identification, a more complicated task, in
the last 10–15 years, powerful new methods from computer
science have been applied. This includes numerous studies
on diffusion maps, local linear embedding, manifold learning,
support vector machines, artificial neural networks, and sym-
bolic regression [13,15,16,34]. Here, we focus on symbolic
regression. It must be emphasized that most methods are not
unique and their success can only be tested based on their
predictive power.

A. Symbolic regression

One drawback of many computational-oriented methods is
the lack of equations that can be analyzed mathematically in
the neighborhood of analyzed trajectories. Symbolic regres-
sion is a way to produce such equations. It includes methods
that identify the structure or parameters of the searched
equation or both of them simultaneously with respect to
objective functions.

This means that methods such as GLMs or GAMs are
contained in such a description. A recent implementation
of GLMs is fast function extraction (FFX) [22], which
is explained briefly in Sec. II A 2. Genetic programming,
explained in Sec. II A 1, is another intuitive method and often
used for symbolic regression. Here, the algorithm searches the
function space through random combinations and mutations
of functions, chosen from a basic set of equations.

Symbolic regression is supposed to be form free and
thus unbiased towards human perception. However, human
knowledge enters in the meta-rules imposed on the model
through the basic building blocks and rules on how they can
be combined. Thus, the optimal model is always conditioned
on the underlying meta-rules.

1. Genetic programming

Genetic programming is an evolutionary algorithm to find
an optimal algorithm or program. The term “programming” in
optimization is used synonymously with “plan” or algorithm. It
was used first by Dantzig, the inventor of linear programming,
at a time when computer programs did not exist as we know
them today [35]. The algorithm seeks an optimal algorithm, in
our case a function, using evolutionary, or “genetic,” strategies.
The pioneering work was established by [36]. We can briefly
describe it as follows: in GP we can represent formulas as
expression trees, such as that shown in Fig. 2. Nonterminal
nodes are filled with elements from a basic function set defined
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FIG. 2. Illustration of the genetic programming mutation and
crossover. The upper left expression tree describes the function
f (x,y) = √

0.981 + sin(x). Mutation is conducted by picking a
random subtree, here the single terminal node 0.981, and replacing it
with a new random expression tree. Similarly, the crossover operator
(right) takes two expression trees and swaps two random subtrees.

by the meta-rules. Terminal nodes consist of variables or
parameters. Given the optimization problem

f ∗ = argopt
f

�, (1)

we seek the optimal solution f ∗ through optimizing (mini-
mizing or maximizing, or for some cost functionals, finding
the supremum or infimum) the fitness (or cost) functional �.
To find the optimal solution, GP uses a whole population of
candidate solutions in parallel which are evolved iteratively
through fitness proportionate selection, recombination, and
mutation operations. The initial generation is created ran-
domly. Afterwards, the algorithm cycles through the following
loop until it reaches its convergence or stopping criteria:

(1) breed. Based on the current generation Gt , a new set
of size λ of alternative candidate solutions, the offspring Ot ,
are selected. Several problem-dependent operators are used
for this tweaking step, e.g., changing parts of a candidate
solution (mutation) or combining two solutions into two new
ones (crossover). These tweaking operations may include
selection pressure, so that the “fitter” solutions are more likely
to produce offspring.

(2) evaluate. The offspring Ot are evaluated; i.e., their
fitness is calculated.

(3) select. Based on the fitness value, members of the next
generation are selected.

This scheme fits the requirements of symbolic regression.
Mutation is typically conducted by replacing a random subtree
by a new tree. Crossover takes two trees and swaps random
subtrees between them. This procedure is illustrated in Fig. 2.
The fitness function uses a typical error metric, e.g., least
squares or normalized root mean squared error.

The random mutations sample the vicinity of their parent
solution in function space. As a random mutation could likely
lead to less optimal solution, it does not ensure a bias towards
optimality. However, this is achieved by the selection, because
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it ensures that favorable mutations are kept in the set while
others are not considered in further iterations.

By design and when based on similar meta-rules, GP in-
cludes other algorithms such as GLMs or linear programming
[34].

Algorithm 1 Top level description of a GP algorithm

procedure MAIN

G0 ← random(λ)
evaluate(G0)
t ← 1
repeat

Ot ← breed(Gt−1,λ)
evaluate(Ot )
Gt ← select(Ot,Gt−1,μ)
t ← t + 1

until t > T or Gt = good()
end procedure

2. FFX and the elastic net

Here we briefly summarize the FFX algorithm of Mc-
Conaghy et al. [22]. This is a symbolic regression algorithm
based on a combined generalized linear model and elastic net
approach:

f (�x) = a0 +
NB∑
i=1

aiφi(�x), (2)

where {ai} are a set of coefficients to be determined, and {φi}
are an overdetermined set of basis functions described by a
heuristic, simplicity-driven set of rules (e.g., highest allowed
polynomial exponent, products, nonlinear functions, . . .).

In the elastic method, a least squares criterion is used
to solve the fitting problem. To avoid overfitting, i.e., high
model sensitivity on training data, two regularizing terms
are added: the �1, and �2 norms of the coefficient vector.
The �1 norm favors a sparse model (few coefficients) and
simultaneously avoids large coefficients. The �2 norm ensures
a more stable convergence as it allows for several, possibly
correlated variables instead of a single one. The resulting
objective function written in its explicit form reads [37]

�a∗ = argmin
�a

||y − f (�x,�a)||2 + ηρ||�a||1 + (1 − ρ)η||�a||2,

(3)

where y are the data, η � 0 is the regularization weight, and
ρ ∈ [0,1] is the mixing between �1 and �2 norms. A benefit
of the regularized objective function is that it implicitly gives
rise to models with different complexity, i.e., different number
of bases NB .

For large values of η, the predicted coefficients will all be
zero. Reducing λ will result in more complicated combinations
of nonzero coefficients. For every point on the (η,ρ) grid, the
“elastic net,” one can obtain a single optimal model using a
standard solver such as coordinate descent to determine the
optimal coefficients �a∗.

A small change in the elastic net parameters leads to a small
change in �a∗ such that one can use the already obtained solution

of a neighboring grid point to restart coordinate descent with
the new parameters.

For the obtained models we can calculate the normalized
root mean squared error and model complexity (number of
used basis functions). The FFX algorithm is based purely on
deterministic calculations. Hence its runtime compared to a
similar GP algorithm is significantly shorter. However, the
meta-rules are more stringent.

B. Multiobjective fitness

As mentioned in Sec. II, the solution of the regression
problem is not unique in general. A major factor which
motivates symbolic regression is its comprehensible white-box
nature opposed to the black-box nature of, for example, neural
networks. Invoking Ockham’s razor (“law of parsimony”), a
simple solution is considered superior to a complicated one
[38,39] as it is more easy to comprehend. In addition, more
complicated functions are prone to overfitting. This means that
complexity should be a criterion in the function search, such
that more complex functions are considered less optimal. We
therefore seek a solution which satisfies two objectives.

Comparing solutions by more than one metric �i is not
straightforward. One possible approach is to weight these
metrics into one objective �:

� =
N∑
i

wi�i, (4)

making different candidate solutions easily comparable. In
this expression, it is implicitly assumed a priori that there is a
linear trade-off between the individual objectives. An example
for such a composite metric is the elastic net, described by
Eq. (3). This approach has three major flaws:

(1) One needs to determine suitable (problem depen-
dent) wi .

(2) One does not account for nonlinear trade-offs (e.g.,
all-or-nothing in one objective).

(3) Instead of a single optimal solution there may be a set
of optimal solutions defining the compromise between con-
flicting objectives (here �1 � error versus �2 � complexity).

The optimal set is also called the Pareto front; it describes
the set of points (�1, . . . ,�N ), where at least one of the
objectives �i is minimum. This set is called as well the set
of nondominated candidate solutions, i.e., candidate solutions
that are not worse than any other solution in the population
when compared on all objectives. We illustrate the Pareto
front in Fig. 3 by filled circles. For the FFX algorithm, one
can obtain the (Pareto) optimal set of candidate solutions by
sorting the models. The mapping from parameter space to the
Pareto-optimal set is called Pareto filtering. Interestingly, the
concept of nondomination already partly solves the sorting
problem in higher dimensions as it maps from RN to M

ordered one-dimensional manifolds. A sorting algorithm must
use a kind of ranking, which in this case is described as follows:
Candidate solutions in the Pareto front are of rank 0. Solutions
of rank 1 are obtained as follows: of all models found one
subtracts the rank 0 ones, and determines a new Pareto front
for the remaining models. The models on this front have rank
1. This procedure can be continued until all candidate solutions
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FIG. 3. Illustration of the ranking for Pareto optimization. For a
given set of points in the “objectives plane” (�1,�2) one labels first
all points with rank zero that possess at least one minimum objective,
the Pareto front (filled circles, solid line). Then, these points are
eliminated from the set and the remaining points are ranked the same
way: the rank 1 model emerges (filled diamonds, dashed line). This
procedure is repeated until all points are ranked.

are ranked. Formally, we introduce the generalized comparison
operator �, and define model 1 f1 to be better than model 2
f2 if its rank is lower:

f1 � f2 ⇐= rank(f1) < rank(f2).

To compare models of the same rank, one has to introduce
an additional heuristic criterion, for which there are several
choices [40–42]. Usually the criterion promotes uniqueness of
a candidate solution to ensure diversity of the population to
avoid becoming trapped in a local minimum. As the uniqueness
of a solution may depend on its representation and is usually
costly to compute, often its projection to fitness space is used.
This is conducted to ensure an effective spread of candidate
solutions on the Pareto front.

For example, the nondominated sorting algorithm II (NS-
GAII) [40] uses a heuristic metric called crowding distance to
compare two models of the same rank. The scaled Euclidean
distance in fitness space to the neighboring models is used to
describe the uniqueness of a model. For NSGAII we have

f1 � f2 ⇐=

⎧⎪⎨
⎪⎩

rank(f1) < rank(f2),

rank(f1) = rank(f2) and

distance(f1) > distance(f2).

(5)

Out of the current generation and their offspring Gt ∩ Ot the μ

best, in terms of �, solutions are chosen for the next generation
Gt+1. This selection method ensures elitism; i.e., the best
solutions found so far are carried forward in next generations.
Looking at the high-level description in algorithm 1, Gt can
be seen as an archive which keeps old members as long as
they are not dominated by a new solution from the current
offspring Ot .

The different selection strategies were first studied in the
context of genetic algorithms, but more recently they have
been successfully applied to symbolic regression [43,44].

III. OUR GP SETUP

For all applications presented in Sec. IV, our function set is
{+, ∗ , − ,/, sin , cos , exp , log ,

√
, 2}. All discontinuities are

defined as zero. Our terminal set consists of the input data xi

as well as symbolic constants ci which are determined during
evaluation. We set up our multiple objectives as follows: the
algorithm runs until the error of the most accurate model is
below 0.1%, or for 100 generations. The population size μ

as well as the number of offspring per generation λ is set to
500. The depth of individuals of the initial populations varies
randomly between 1 and 4. With equal probability we generate
the corresponding expression trees where each leaf might have
a different depth or each leaf is forced to have the same
depth. For mutation we randomly pick a subtree and replace
it with a new tree, again using the half and half method, with
minimum size 0 and maximum size 2. Crossover is conducted
by randomly picking a subtree each and exchanging them.
Our breeding step is composed of randomly choosing two
individuals from the current population, performing crossover
on them with probability p = 0.5, and afterwards always
mutating them. Our multiobjective cost functional has the
following components:

�1 = �NRMSE(y,ŷ) =
√∑N

i=1
(yi−ŷi )2

N

ymax − ymin
, (6)

where �NRMSE is the normalized root mean squared error
(NRMSE) of the observed data y and its predictor ŷ = f (�x),
and

�2 = size(f ) (7)

is simply the total number of nodes in the expression tree f .
Selection is conducted according to NSGAII. In this paper, a
model is called accurate if its error metric �1 is small, where
“small” depends on the context. For example, numerical data
might be modeled accurately if �1 � 0.05 and measured data
might be modeled accurately if �1 � 0.20. Similarly a model
is complicated if its complexity �2 is relatively large. “Good”
and its comparatives are to be understood in the sense of �.

During the generation of the initial population and selection,
we force diversity by prohibiting identical solutions. It is
very unlikely to randomly create identical solutions. However,
offspring may be nearly identical in structure as well as
fitness and consequently a crossover between parent and child
solution may produce an identical grandchild solution. The
probability of such an event grows exponentially with the
number of identical solutions in a population and therefore
it lowers the diversity of the population in the long-term
risking a premature convergence of the algorithm. Thus, by
prohibiting identical solutions, the population will have a
transient period until it reaches its maximum capacity. This will
also reduce the effective number of offspring per generation.
This change reduces the probability of becoming trapped in a
local minimum because of a steady state in the evolutionary
loop.

Our main emphasis is the treatment of the model parameters
ci . In standard implementations, e.g., the already mentioned
[43,44], the parameters are mutated randomly, like all other
nodes. Here, using modern computational power we are able
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to use traditional parameter optimization algorithms. Thus, the
calculation of �1 becomes another optimization task given the
current model fj :

�1 = �NRMSE(y,f (�x,�c∗)) (8)

with

�c∗ = argmin
�c

�NRMSE(y,f (�x,�c)). (9)

The initial guess for ci is either inherited or set to one. Thus,
we effectively have two combined optimization layers. Each
run is conducted using 10 restarts of the algorithm. The Pareto
front is the joined front of the individual runs. Finally, we can
use algebraic frameworks to simplify the obtained formulas.
This is useful, since a formula (phenotype, macrostate) may
be represented by many different expression trees (genotypes,
microstates).

IV. CASE STUDIES

We present here results for three systems with increasing
difficulty: first, we demonstrate the principles using a very
simple system, the harmonic oscillator (A); second, we infer a
predictive model for a set of coupled oscillators (B); and finally
we show how we can predict a very applied system, namely
the power production from a solar panel (C). For the first two
examples we use numerically produced data, where we have
full control over the system, while for the demonstration of
applicability we use data from a small solar power station
[45].

A. Harmonic oscillator

In this subsection we describe the first test of our methodol-
ogy: an oscillator should be identified correctly and a accurate
prediction must be possible. Consequently, we investigate the
identification of a prediction model, not necessarily using a
differential formalism. This might be interpreted as finding
an approximation to the solution of the underlying equation
by data analysis. A deep investigation of the validity of the
solution for certain classes of systems is rather mathematical
and is beyond the scope of this investigation.

Our system reads

ẋ = y, (10)

ẏ = −ω2x, (11)

where x and y are the state variables and ω is a constant.
We use the particular analytical solution x(t) = x0 sin(ωt),
y(t) = x0ω cos(ωt). The prediction target is x(t + τ ), where τ

is a time increment.
Since the analytical solution is a linear combination of the

feature inputs, just N = 2 data points are needed to train the
model. This holds for infinite accuracy of the data and serves
as a trivial test for the method. In general, a learning algorithm
is “trained” on some data and the validity of the result is tested
on another set, that is as independent as possible. That way,
overfitting is avoided. For the same reason one needs to define a
stop criterion for the algorithm, e.g., the data accuracy is 10−5;
it is useless and even counterproductive to run an algorithm

FIG. 4. Harmonic oscillator study, method FFX: NRMSE (6)
versus noise level σ for different training set lengths N and fixed
τ = 10. Sufficiently small noise does not worsen the predictability;
i.e., the prediction algorithm stops at the target training NRMSE of
1%. After 0.3 the error does not increase further, since the noise
covers the signal completely. Dashed line marks σ = 0.17.

until a root mean square error of 10−10 (the cost function used
here) is achieved. For the example under consideration, we
stop the training once the training error is smaller than 1.

Typically, a realistic scenario should include the effect
of noise, e.g., in the form of measurement uncertainties.
We consequently add “measurement” Gaussian noise with
mean zero and variance proportional to the signal ampli-
tude: ξ1 ∼ N (0,(σx0)2), ξ2 ∼ N (0,(σx0ω)2), hence x̃ = x +
ξ1,ỹ = y + ξ2. The training and testing data sets were created
as follows: the data are generated between [0,tmax]. Out of the
first half, we chose N values at random for training. For testing
purposes we use the second half. We study the parameter space
(N,τ,σ ) and average the testing errors over 50 realizations
for each parameter set. We only present the results obtained
with the FFX method. Of course, a similar study using GP
is possible, but practically limited by the runtime. However,
the generic nature GP allows for stochastic modeling, which
is the subject of ongoing research. Nevertheless, a preview
with qualitatively similar results can be found in Fig. 16. In
Fig. 4 we display the normalized root mean squared error of
the prediction using FFX (measured against the noisy data)
as a function of the noise amplitude. Given x(t) and y(t) the
analytical solution for the non-noisy system is just a linear
combination, i.e., x(t + τ ) = cos(ωτ )x(t) + sin(ωτ )

ω
y(t), and

has a complexity of 2. During training we aim for a NRMSE of
1%. Thus, we find the analytical solution in the limit of small
noise amplitude σ , see Fig. 16 and Fig 6. Strong noise covers
the signal and thus the error saturates.

The length of the analyzed data is another important
parameter: typically one expects convergence of the error
∼ 1√

N
for more data. A “vertical” cut through the data in Fig. 4

is shown in Fig. 5. The training set length N has a much lower
impact than the classical scaling suggests. Crucial for this
scaling is the form free structure as well as the heuristic which
is used to select the final model. For demonstration purposes,
we chose the most accurate model on the testing set, which
is of course vulnerable to overfitting. The average complexity,
calculated by Eq. (7) of the final model as a function of the
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FIG. 5. Harmonic oscillator study, method FFX: In solid blue:
normalized root mean squared error vs training set length N for
σ = 0.17. Dashed green: e−2/

√
N . The error decreases slightly with

N , but the scaling is much less rapid than 1/
√

N .

noise amplitude, is shown in Fig. 6. As evident we can recover
the three regimes of Fig. 4. For small noise, the analytical
and numerical solutions agree. In the intermediate regime we
find on average more complex models (in comparison to the
analytical solution). Very strong noise hides the signal and
a good prediction is impossible. The optimal solution tends
to be a single constant; i.e., for high σ the complexity tends
to smaller values as seen in Fig. 6. The prediction error has
two components: (1) given a structure, noisy data will lead to
uncertain parameters and (2) due to the form free nature of
symbolic regression, noisy data will also lead to an uncertain
structure, increasing the uncertainty in the parameters. Thus,
final model selection has to be performed carefully, especially
when dealing with noisy data. A detailed study is presented
for the example of coupled oscillators.

FIG. 6. Harmonic oscillator study, method FFX: Average com-
plexity of the chosen model vs noise amplitude σ . The form-free
structure allows for overfitting. For small noise, the true solution
with complexity 2 is found; for higher noise levels, the algorithm
starts to fit the noise and more terms are added, reflected by a higher
complexity.

B. Coupled oscillators

The harmonic oscillator is an easy case to treat with
our methods. Now, we extend the analysis to add a spatial
dimension. We study a model of FitzHugh-Nagumo oscillators
[46] on a ring. The oscillators are coupled and generate
traveling pulse solutions. The model was originally derived
as a simplification of the Hodgkin-Huxley model to describe
spikes in axons [47], and serves nowadays as a paradigm for
excitable dynamics. Here, its spiky behavior is used as an
abstraction of a front, observed in real world applications such
as the human brain, modeled by connected neurons, or a wind
power plant network where fronts of different pressure pass
through the locations of the wind power plants. The aim is to
show that temporal and/or spatial information on the state of
some network sites enables an increase in predictability of a
chosen site or eventually (if there are waves in the network) to
the front detection. The model for the ith oscillator is

v̇i = vi − v3
i

3
− wi + Ii + D

∑
i,j

Aij (vj − vi), (12)

ẇi = ε(vi + a − bwi), (13)

where vi and wi , i,j = 1, . . . ,N , denote the fast and slower
state variables, Ii is an external driving force, D is the coupling
strength parameter, and Aij ∈ {0,1} describes the coupling
structure between nodes i and j . The constant parameters ε,
a, and b determine the dynamics of the system as ε−1 is the
time scale of the slower “recovery variable,” and a and b set
the position of the fixed point(s). For Aij we choose diffusive
coupling on a ring, i.e., periodic boundary conditions. With
the external current Ii we can locally pump energy into the
system to create two pulses which will travel with the same
speed but in opposite directions, annihilating when they meet.

Using different spatiotemporal sampling strategies, the aim
is to detect and predict the arrival of a spike train at a location
far enough away from the excitation center (i.e., farther than
the wave train diameter). We mark this special location with
the index zero.

Note that we do not aim to find a model for a spatiotemporal
differential equation, since this would involve the estimation
of spatial derivatives, which in turn require a fine sampling.
This is definitely not the scope here. Rather we focus on the
more application-relevant question to make a prediction based
on an equation.

The construction of the data set was similar to the single
oscillator case: sensors were restricted to the vi variables. We
can record the time series of v0 and use time delayed features
for the prediction. Another option is to use information from
nonlocal sensors.

We prepare and integrate the system as follows: we
consider a ring of N = 200 oscillators. The constants are
chosen as a = 0.7, b = 0.8, τ = 12.5, and D = 1. The
system is initialized with vi(0) = 0 and wi(0) = −1.5. With
the characteristic function χT (x) = 1 if x ∈ T else 0 we can
write the space and time dependent perturbation as Ii(t) =
5χt−�t�0.4(t)χt�40(t)χi∈{−50,−49}(i). This periodic perturba-
tion leads to a pair of traveling waves. The data were sampled at
times tn = n�t with �t = 0.1. The system has multiple time
scales: two are associated with the on-site FitzHugh-Nagumo
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FIG. 7. Space-time plot of the pulse evolution. vi is color
coded. The front velocity is vf = 1.28. Pulse width (full width half
maximum) τP = 8.4.

oscillator (τfast = 1, τslow = 1
ε
), while two more are due to

diffusive coupling (τDiff = D) and perturbation [τPert behaves
as Ii(t)]. The temporal width of the pulse traveling through
a particular site, τP = 8.4, corresponds to the full width half
maximum of the pulse. In Fig. 7 we show the evolution of
the oscillator network. The state of vi is color coded. The
horizontal width of the yellow stripe corresponds to the spatial
pulse width ξ � 10.75. The speed of the spike or front is
consequently vfront ∼ ξ/τP = 1.28. An animation of this can
be found in the Supplemental Material [51]. The training data
were recorded in three different ways:

(1) site only. Only v0 is recorded, and time delayed features
v0,�n = v0(t = (n − �n)�t) are also included with �n�t =
−1, − 2, − 3, − 4.

(2) spatially extended. We record v0 and additionally vi

with i = −2, − 4, . . . , − 10, − 20 (upstream direction).
(3) mixed. This combines the two approaches above. For

each site we also include the time delayed features.
To avoid introducing additional symbols we use state

variables with double subscripts for discrete times, where the
second index refers to time, and one subscript for continuous
time. The respective usage is evident from the context. We
choose to predict the state at time t = 2 given the data
described above. In other words, the prediction target is v0(tn +
τ ) with τ = 20 � 2.5τP , corresponding to the requirement to
be far enough from the excitation point. Of course, this implies
a distance of �x ∼ 2.5ξ . The testing and training sets were
selected by using every second point of the recorded time
series.

1. FFX results

We first discuss the results obtained by FFX (Sec. II A 2).
In Fig. 8 we display the Pareto fronts using the three
different approaches for the training set. All curves have one
point in common which represents the best fitting constant
(complexity 0). As one would expect, the site-only data do not
contain enough information to detect a front. Thus, even high
complexity models cannot reach an error below 4% and the
required error of 1% is never met. In the two other data sets the
algorithm has the possibility to find a combination of spatial

FIG. 8. Coupled spiking oscillators, method FFX: Pareto fronts
for the different spatiotemporal samplings of the network data. For
this plot we use ρ = 0.95. This leads to the nonconvex shape of the
front based on the most information. The models are reevaluated on
the testing set.

and temporal inputs to account for the front velocity. Note
that the shape of the front strongly depends on the internal ρ

parameter of the elastic net Eq. (3). More information should
not lead to a decrease in predictability. Thus, the Pareto front
of a data set richer in features dominates the corresponding
Pareto front of a data set with less features. Counterintuitively,
using ρ = 0.95 [48] the front for the mixed data set becomes
nonconvex as some good fitting models are hidden by the
regularizer. Thus, we can use ρ to influence the shape of the
front. Despite that, the most accurate model of the mixed data
set is still the most accurate model overall.

In the following we discuss the results for the best models
for each feature set.

If we take the perspective of an observer sitting at i = 0,
we see the spike passing: first the state is zero, then a slow
increase is observed followed by a rapid increase and decrease
around the spike maximum. Eventually the state returns slowly
to zero. Statistically, the algorithm is trained by long quiet
times and a short, complicated spike form which is hard to
model by a reduced set of state variables. This is illustrated
in Fig. 9(a) where for any feature set the biggest differences
occur in the spike region. Apparently, the model with site-only
variables shows worse results than the spatial one, and the
spatiotemporal set models best the passing spike. We note that
in a direct confrontation, the true and modeled signal would be
hard to distinguish. In Fig. 9(b) we confront the time derivative
for the model from mixed variables. The true and modeled
spike are indistinguishable by eye.

The formulas of the most accurate models are shown in
Table I. For site-only features, quadratic combinations of
points at different times occur. This reflects the approximation
of the incoming front by a quadratic term. If, however only
spatial points are used, the dynamics far away are used to
predict the incoming front. If the small terms are neglected,
the model consists of the signal at the target site itself, and the
previous site (−2) which carries the largest weight. Physically,
it means that despite being far away the front is already felt
at 2 sites away. Since the front is stationary in a co-moving
frame, spatiotemporal embedding is best, namely sampling the
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(a)

(b)

FIG. 9. Coupled spiking oscillators, method FFX. For each
feature set, the most accurate model is used as the predictor v̂0.
In (a) we show the difference δv0 = v0 − v̂0. The upper two curves
are shifted by 0.25 and 0.5, respectively. In (b) we compare the time
derivative (approximated by the finite difference quotient) of the most
accurate model overall (mixed) and the real data. To better visualize
the curves we only plot every seventh point. For details see text.

spike train in space and moving in time with the train velocity.
Then we have a simple and compact linear dependence as seen
in the last row of Table I. Let us inspect the possible physics
in the model approximating the constants a0,a1,a2,a3 roughly
as 0, 0.45, 0.35, 0.175 such that a2 = 2a3. We first notice
that τp = 8.4 � 10. The last terms can then be recombined
to a3v−2,−10 + a3v−2,−10 + v−2,0 as a mean value of the state
with time distance of approximately one typical time scale. The
state at −30 is at the backside of the front and together the most
important information, namely the increase and decrease of the
incoming signal is selected by the model. Alternatively, since
v(0,t) = v(−vf τP ,t − τP ) the best model in Table I can be

FIG. 10. Coupled spiking oscillators, method GP. Averaged
Pareto fronts; for each spatiotemporal sampling option, 10 runs are
conducted and the resulting complexities and errors are averaged.
Error bars represent the standard deviation. For the spatially extended
and mixed data sets the errors are smaller than the circle size. The
models are reevaluated on the testing set.

interpreted as the weighted average of the closest combination
(�i,�t) to represent the front velocity (�i

�t
= 4

3 ≈ vf ). This
demonstrates how powerful the algorithm works in selecting
important features.

2. GP results

We again examine the Pareto-optimal models illustrated in
Fig. 10. For each feature set we obtain a nonconvex Pareto
front. The shape and the values of the fronts are broadly
similar to the results obtained by FFX. Because GP is an
evolutionary method and relies on random breeding rules,
we display averaged results: we initialize the algorithm with
different seeds of the random number generator, calculate the
Pareto fronts, and average the errors for the nondominated
models of the same complexity. Note that not all complexities
occur on each particular front. This way, we obtain a generic
Pareto front and avoid atypical models which may occur by
chance. The result of Table II is not averaged, but the best
result for one specific seed (42). The errors of the models
reachable by the different sets are again decreasing from site
only over spatially extended to mixed. However, the mixed
model reaches almost zero error which is quite remarkable.

The difference plots for the method are given in Fig. 11.
While the site-only set is not able to give a convincing model
for an incoming front, the spatially extended set gives a
reasonable model with little error. The mixed model is very
good with perfect coincidence of model and true dynamics.
This model cannot be distinguished by eye from the observed
signal.

TABLE I. Coupled spiking oscillators, method FFX. Formulas of the most accurate models. The spatiotemporal embedding reproduces the
data very well; i.e., an early detection is possible.

Temporal site only −0.0273 + 3.34v0,0 − 2.41v0,0v0,−10 − 2.09v0,−40v0,−10 + 1.64v2
0,−20 − 1.53v0,−20 − 1.16v0,−10 + 0.991v2

0,−30

+ 0.684v2
0,0 + 0.463v0,−30 + 0.433v0,−20v0,0 + 0.373v0,−20v0,−10 − 0.359v2

0,−40 + 0.216v0,−40 + 0.00286v2
0,−10

Spatially extended −0.002 47 + 0.897v−2,0 + 0.178v0,0 − 0.0650v−4,0 + 0.002 80v−10,0 − 0.002 10v−8,0

Temporal spatial 0.008 94 + 0.442v−4,−30 + 0.346v−2,−10 + 0.175v−2,0
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TABLE II. Coupled spiking oscillators, method GP. Formulas of the most accurate models for seed 42.

Temporal site only v2
0,0/[v0,−10 + √( − v0,−10(v0,0 − v0,−30){v0,−30/ sin(v0,−10 + v0,−20) + exp(v0,−30) − [sin(v0,−30)]1/2

+ cos[(v0,−30)1/2v0,−40]})]
Spatially extended 0.208v0,0 + 0.792v−2,0 + 0.0274 362 547 430 272 exp(−v−4,0) sin(v−2,0)

Temporal spatial 0.878v−4,−30 + 0.124 496v−4,−40

The models provided by the GP algorithm with seed 42
are given in Table II. Due to the very general character of GP
these can be overwhelming at first glance. However, we can
simplify them down by using computer algebra systems such
as SYMPY [24] or MATHEMATICA (here we use SYMPY).

The interpretation of the GP results requires a bit more
thinking. In essence, they follow a logic similar to the FFX
results. The site-only model is complicated, and instead of
a square operator a trigonometric function is used to mimic
the incoming pulse. Since the data do not include directly
all information needed, the algorithm tries to fit unphysical
functions. This is clearly a nondeterministic and overfitting

(a)

(b)

FIG. 11. Coupled spiking oscillators, method GP. For each
feature set, the most accurate model is used as the predictor v̂0.
In (a) we show the difference δv0 = v0 − v̂0. The upper two curves
are shifted by 0.25 and 0.5, respectively. In (b) we compare the time
derivative (approximated by the finite difference quotient) of the most
accurate model overall (mixed) and the real data. Prediction and true
data cannot be distinguished by eye. To better visualize the curves we
only plot every seventh point.

result, mirrored by the high complexity of the functions
involved. For spatially extended models, we obtain linear and
sinusoidal components, and the model uses only three features,
namely the on-site values and the ones at two and four units
left on our site under consideration. Remarkably, a sinusoidal
behavior is observed with an exponential decrease, which is
our intuition. Eventually, the spatiotemporal embedding yields
a very simple model which approximates the front velocity vf

to be between 1 and 4
3 . The accuracy of this model is very

high.
Summarizing, when given enough input information, both

methods find a linear model for the predictor v̂0(t + τ ) by
finding the most suitable combination of temporal and spatial
shift to mimic the constant front velocity. If this information
is not available in the input data, nonlinear functions are used.

C. Solar power data

In this section, we describe the results obtained for one-
day-ahead forecasting of solar power production. The input
data used for training are taken from the unisolar solar panel
installation at Potsdam University with about 30 kW installed.
Details are found at [45]. We join the solar power data with
meteorological forecast data from the freely available Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)
portal [49] as well as the actual observed weather data. These
public data are of limited quality and serve for our proof of
concept with real data and all their deficiencies.

The solar panel data P (t) were recorded every five minutes,
at geoposition 52.41 latitude, 12.98 longitude. The information
about the weather can be split into two categories: weather
observations of a station near the power source W (t) and the
weather forecast Ŵ (t + τ ), where τ is the time difference
to the prediction target. We do not have weather data from
the station directly, but can use data from a weather station
nearby (ID: 10379). The weather forecast data are obtained
every six hours at the closest location publicly accessible,
52.5 latitude and 13 longitude. Typical meteorological data
contain, but are not limited to, the wind speed and direction,
pressure at different levels, the irradiation, cloud coverage,
temperature, and humidity. However, in this example, we only
use temperature and cloudiness as well as their forecasts as
features for our model. The latter is obtained by minimizing

�1 = �NRMSE(P (t + τ ),P̂ (P (t),W (t),Ŵ (t + τ ))),
(14)

�2 = size(f ),

with f the model under consideration. Our prediction target is
P̂ (t + τ ) with τ = 24, the one-day-ahead power production.
We create our data sets with a sampling of 1 h. While additional
information from the solar power data remains unused, the
prediction variables have to be interpolated. The quality of the
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TABLE III. Solar power study: description of the data set. We use a set of 5 features drawn from different sources with different sampling.

Name Symbol Source Sampling Variable

Solar power P (t) direct access 10 min x1

Total cloud coverage tcc(t) Synop 1 h x4

2 meter temperature T (t) Synop 1 h x3

Total cloud coverage prediction tccpred(t,τ ) ECMWF-TIGGE 6 h x2

2 meter temperature prediction Tpred(t,τ ) ECMWF-TIGGE 6 h x0

forecast depends on quality of the weather measurement and
weather forecast. As we use publicly available data, we can
only demonstrate the procedure and cannot attain errors as low
as those used in commercial products, which will be discussed
elsewhere. The features of the the data set are listed in Table III.
Furthermore, we scale each feature to have its minimum equal
zero and maximum equal to one. The models are trained with
data from June and July of 2014. Testing is conducted for
August 2014. To obtain a first impression (assuming no prior
knowledge), we calculate the mutual correlation of the data.
The power produced the next day is heavily correlated with
the predicted solar irradiation. This is a confirmation that the
physics involved is mirrored in the model and that weather
prediction is good on average. Quantitative statements on the
quality of weather prediction is not easy and can be found in
the literature [49].

1. FFX results

The results of the FFX method are shown in Figs. 12 and
13 and the models in Table IV. As shown, the FFX method
is less capable of predicting longer inactive periods, such as
at night, where no solar power is produced. This is clearly
visible in Fig. 13. One may wonder why a constant (complexity
zero) explains about 30% of the data (Fig. 12). To understand
this, let us consider the example of a uniform distribution: the
standard deviation is 0.366 ( 1√

12
); for a Gaussian distribution

the standard deviation from the mean is 0.34 (one-sided). This

FIG. 12. Solar power study, Pareto front obtained using FFX. The
results for FFX are as accurate as the ones obtained with GP. Test
and training set are, however, nicely aligned. This demonstrates not
only consistency of the models, but less variability of the models
found.

coincides with our numbers, where we note that a Gaussian is
only illustrative, since the power is strictly nonnegative.

Analyzing the equations of Table IV, we notice that the
best FFX function is a quadratic form with maxima to limit
the signal above zero. This amounts to recover the mean
shape of the signal as a quadratic function. Unfortunately this
seems almost trivial since one could obtain this mean shape by
purely geometrical considerations with a factor for the cloud
coverage.

(a)

(b)

FIG. 13. Solar power study, method FFX. (a) Time series of the
predicted (P̂ ), and observed (P ) data. We display the results of the
first week of August 2015. Similarly to the GP prediction extrema
are not particularly well predicted. For the linear model, even the
zero values are not well hit. The reason for this is the regression to
mean values and the inability of powers to stay at zero for a sufficient
time. (b) Histogram of the residuals ε = P − P̂ . Despite different
formulas, the histogram of the residuals is asymmetric around zero
with a trend to underpredict as well.
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TABLE IV. Solar power study, method FFX: formulas of the Pareto front models.

Complexity �2 Error �1 Formula

0 0.2694 0.221
1 0.1996 0.108 + 0.511x1

2 0.1941 0.0223 + 0.606x1 + 0.139x0

3 0.1934 0.0470 + 0.436x1 + 0.328x0x1 + 0.138x4x0

4 0.1899 0.459 − 0.458 max(0,0.200 − x1) − 0.339 max(0,0.333 − x1) − 0.134 max(0,0.733 − x1)
− 0.0828 max(0,0.867 − x1)

5 0.1814 0.301 − 1.25 max(0,0.333 − x1) max(0,0.200 − x1) − 0.810 max(0,0.467 − x1) max(0,0.200 − x1)
+ 0.457x0x1 − 0.252 max(0,0.333 − x1) − 0.0794 max(0,0.200 − x1)

2. GP results

Let us consider the results of our forecasting with GP shown
in Fig. 14. The Pareto fronts are shown for both the training
and testing set. As presented for the coupled oscillators in
Sec. IV B 2, we have conducted 10 runs with different seeds
and display the averaged result. Of course, for the training
set (filled diamonds), increasing complexity means decreasing
error. We see a strong deviation for very complicated models of
the testing data (filled circles). This may be an indication of a
small testing sample, or indicate overfitting. The outlier at � =
18 is a result of the particular realization of the evolutionary
optimization. With a different setting, e.g., more iterations,
or multiple runs such outliers are eliminated. To clarify this
question, we show the functions found as a solution of our
procedure with increasing complexity and one specific seed
(42) in Table V.

From Table V we see that GP follows a very reasonable
strategy: First, it recognizes that the persistence method is a
legitimate thing, with production tomorrow being the same
as today [x1 = P (t)]. Up to a complexity of 5, the identified
models only depend on the solar power x1 and describe with
increasing accuracy the conditioned average daily profile.
The more complex models include the weather data and
forecast. The geometric mean of current power and predicted
temperature is present. However, due to the low quality

FIG. 14. Solar power study, average Pareto front obtained using
GP: with increasing complexity, training and testing data first behave
similarly, then testing deviates strongly indicating overfitting or too
small testing data set, respectively. The peaks around complexity 20
are due to two reasons: there are only a few models on the fronts
(1–3), and one of them is an extreme outlier.

weather forecast as well as the seasonal weather difference
between training and testing data, there is no net gain in
prediction quality.

Without any further analysis, the model with the lowest
testing error is chosen. In Fig. 15(a) we confront the real
time series with the prediction from GP for the model of
complexity 4. One clearly finds the conditioned average
profile. This predicts the production onset a bit too early. The
error distribution is shown in Fig. 15(b), where we recognize

(a)

(b)

FIG. 15. Solar power study, method GP. (a) Real and predicted
time series. We display the results of the first week of August
2015. Prediction used model of complexity 4 which had lowest
error on the test set. (b) Histogram of the residuals ε = P − P̂ .
The distribution is asymmetric around zero. The model tends to
underpredict.
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TABLE V. Solar power study, method GP: formulas of the Pareto front models for seed 42.

Complexity �2 Error �1 Formula

1.0 0.2117 x1

2.0 0.1997 sin(x1)
3.0 0.1938 sin[sin(x1)]
4.0 0.1827 0.662√(x1)
5.0 0.1993 √[x0 sin(x1)]
6.0 0.1931 √[sin(x0) sin(x1)]
7.0 0.189 √[x0x1 cos(x3)]
8.0 0.1943 √(x1)(x0 − x3 + 0.649)
9.0 0.2348 √(x1) cos(x2x3/x0)
10.0 0.192 √(x1)[x0 − x4(x3 − 0.699)]
12.0 0.2057 √(x1)[x0 − x2(x2x3 − 0.592)]
16.0 0.2684 √(x1){x0 + (−x2x3 + 0.597) sin[x4 + sin(x1)]}
18.0 0.1995 −x0

√(x1){[sin(x3) − 0.641] exp(x4) cos(x3) − 1}
25.0 0.1904 x0{√(x1) + (−x3 + 0.715)[sin(x1) + sin(x2x4)] cos(x1)}

an asymmetric error distribution with more probable under-
than overprediction.

Summarizing the results for the solar power curves, both
methods are able to reproduce the true curve to approximately
20% which is legitimate for a nonoptimized method. The
detection of changes when clear sky switches to a partially or
fully clouded one is not entirely satisfactory and one needs to
investigate the improvement of weather predictions for a single
location. As said in the introduction, a perfect weather predic-
tion with high resolution would render this work useless for
power production forecast (although not for other questions).

Nevertheless, we note that the results in the form of analytic
models are highly valuable, because interpretations and further
mathematical analysis are possible.

V. CONCLUSION

We have demonstrated the use of symbolic regression
combined with complexity analysis of the resulting models
for the prediction of dynamical systems. More precisely, we
identify a system of equations yielding optimal forecasts in
terms of a minimized normalized root mean squared error of
the difference between model forecast and observation of the
system state. We did not investigate theoretical aspects such
as the underlying state space. These will be subject of future
investigations. Such work is to be carried out carefully to
find the limitations of the approach, in particular of genetic
programming, which is rather uncontrolled in the way the
search space is explored. On the other hand, the methods stand
in line with a large collection of methods from regression
and classification and one can use much of this previous
knowledge. In our opinion, the multiobjective analysis is
crucial to identify models to a degree such that they can be used
in practice. Probably, this approach will prove very helpful if
used in combination with scale analysis, e.g., by prefiltering
the data on a selected spatiotemporal scale and then identifying
equations for this level.

We have tried to show the capabilities of symbolic
regression by three examples of increasing complexity: a
trivial one—the harmonic oscillator with an almost perfect

predictive power—and a collection of excitable oscillators
where we demonstrated that the methods can perform a kind
of multiscale analysis based on the data. Third, examining the
one-day-ahead forecasting of solar power production we have
shown that even for messy data we can successfully apply sym-
bolic regression. We expect symbolic regression to outperform
classical methods by a few percent in NRMSE. For theoret-
ical considerations, this might be negligible; for real world
applications, a few percent might translate into a considerable
advantage, since the usage of rare resources can be optimized.

A question for further research is how we can use sim-
plification during the GP iteration to alter the complexity. It
may be even a viable choice to control the complexity growth
over time, the so-called bloat, in single objective genetic
programming—a topic of ongoing interest [50]. Additionally,
we introduced an intermediate step to only allow for one
of many identical solutions for further evolution. One could
consider to expand the idea of identical expression trees to
include symmetries.

We conclude that symbolic regression is very useful for
the prediction of dynamical systems, based on observations

FIG. 16. Harmonic oscillator study, method GP: NRMSE (6)
versus noise level σ . We fixed N = 50 and τ = 10. The results are
averaged 30 times. The absolute values for the NRMSE are higher
compared to the results obtained with FFX (Fig. 16).
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only. Our future research will focus on the use of equations to
couple the systems to other macroscopic ones (e.g., finance, in
the case of wind power), and on the analysis of system stability
and other fundamental properties using the found equations,
which is scientifically a very crucial point.
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APPENDIX: HARMONIC OSCILLATOR NOISE
STUDY WITH GP

An analogous case study to that presented in Sec. IV A using
GO requires substantial code development and computational
time, and is the subject of ongoing research. For completeness,
we depict a small case study in Fig. 16.
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